YOMEDIA
NONE

Trong không gian Oxyz, cho hai đường thẳng \(\frac{{x - 2}}{1} = \frac{{y - 4}}{1} = \frac{z}{{ - 2}}\) và \(\frac{{x - 3}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 2}}{{ - 1}}\). M là trung điểm đoạn vuông góc chung của hai đường thẳng trên. Tính độ dài đoạn thẳng OM.

A. \(OM = \sqrt {35} \)   

B. \(OM = 2\sqrt {35} \)

C. \(OM = \frac{{\sqrt {14} }}{2}\)                  

D. \(OM = \sqrt 5 \)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi \(A \in {d_1}:\frac{{x - 2}}{1} = \frac{{y - 4}}{1} = \frac{z}{{ - 2}}\)\( \Rightarrow A\left( {a + 2;a + 4; - 2a} \right)\)

    \(B \in {d_2}:\frac{{x - 3}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 2}}{{ - 1}}\)\( \Rightarrow B\left( {2b + 3; - b - 1; - b - 2} \right)\)

    Khi đó \(\overrightarrow {AB}  = \left( {2b - a + 1; - b - a - 5; - b + 2a - 2} \right)\)

    Mà \(\overrightarrow {AB}  \bot \overrightarrow {{n_1}}  = \left( {1;1; - 2} \right)\) và \(\overrightarrow {AB}  \bot \overrightarrow {{n_2}}  = \left( {2; - 1; - 1} \right)\)

    \(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}2b - a + 1 - b - a - 5 -\\2\left( { - b + 2a - 2} \right) = 0\\2\left( {2b - a + 1} \right) + b + a + 5 + b\\ - 2a + 2 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 6a + 3b = 0\\ - 3a + 6b + 9 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 1\\b =  - 2\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}A\left( {1;3;2} \right)\\B\left( { - 1;1;0} \right)\end{array} \right.\end{array}\) 

    Vậy trung điểm M của AB là \(M\left( {0;2;1} \right) \Rightarrow OM = \sqrt 5 .\)

    Chọn D. 

      bởi Nguyễn Quang Minh Tú 09/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON