YOMEDIA
NONE

Trong không gian Oxyz, cho ba điểm \(A\left( {0;0;1} \right),\) \(B\left( {0;2;0} \right),\) \(C\left( {3;0;0} \right)\). Gọi \(H\left( {x;y;z} \right)\) là trực tâm của tam giác ABC. Tính \(k = x + 2y + z.\) ta được:

A. \(k = \frac{{66}}{{49}}\)                              B. \(k = \frac{{36}}{{29}}\)

C. \(k = \frac{{74}}{{49}}\)                              D. \(k = \frac{{12}}{7}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Phương trình mặt phẳng (ABC) là: \(\frac{x}{3} + \frac{y}{2} + \frac{z}{1} = 1\)\( \Leftrightarrow 2x + 3y + 6z - 6 = 0\)

    Gọi \(H\left( {x;y;z} \right)\).

    Vì H là trực tâm của tam giác ABC nên \(\left\{ \begin{array}{l}AH \bot BC\\BH \bot AC\\H \in \left( {ABC} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC}  = 0\\\overrightarrow {BH} .\overrightarrow {AC}  = 0\\H \in \left( {ABC} \right)\end{array} \right.\).

    Ta có

    \(\begin{array}{l}\overrightarrow {AH}  = \left( {x;y;z - 1} \right);\,\,\overrightarrow {BH}  = \left( {x;y - 2;z} \right)\\\overrightarrow {BC}  = \left( {3; - 2;0} \right);\,\,\,\overrightarrow {AC}  = \left( {3;0; - 1} \right)\end{array}\)

    \( \Rightarrow \left\{ \begin{array}{l}3x - 2y = 0\\3x - z = 0\\2x + 3y + 6z - 6 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{12}}{{49}}\\y = \frac{{18}}{{49}}\\z = \frac{{36}}{{49}}\end{array} \right.\).

    Vậy \(k = x + 2y + z = \frac{{12}}{7}.\)

    Chọn D.

      bởi Ngọc Trinh 09/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON