Giải bài 4.64 tr 123 SBT Toán 10
Tìm các giá trị của tham số m để các phương trình sau có hai nghiệm dương phân biệt
a) x2 - 2x + m2 + m + 3 = 0;
b) (m2 + m + 3)x2 + (4m2 + m + 2)x + m = 0
Hướng dẫn giải chi tiết
Phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm dương phân biệt, điều kiện cần và đủ là:
\(\left\{ \begin{array}{l}
\Delta > 0\\
{x_1}{x_2} > 0\\
{x_1} + {x_2} > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\Delta > 0\\
ac > 0\\
ab < 0
\end{array} \right.\)
a) x2 - 2x + m2 + m + 3 = 0 có Δ' = - m2 - m - 2 < 0, ∀m. Do đó không có giá trị nào của m thỏa mãn yêu cầu bài toán.
b) (m2 + m + 3)x2 + (4m2 + m + 2)x + m = 0 có a = m2 + m + 3 > 0, ∀m và có b = 4m2 + m + 2 > 0, ∀m, nên ab > 0, ∀m. Vì vậy không có giá trị nào của m để phương trình đã cho có hai nghiệm dương phân biệt.
-- Mod Toán 10 HỌC247
-
Giải bất phương trình sau: \({x^2} + 9 > 6x.\)
bởi Phí Phương 19/02/2021
Theo dõi (0) 1 Trả lời -
Giải bất phương trình sau: \({x^2} - 2x + 3 > 0\)
bởi Nhật Mai 20/02/2021
Theo dõi (0) 1 Trả lời -
Xét dấu của tam thức bậc hai sau: \(3{x^2} + x + 5\)
bởi Huy Hạnh 20/02/2021
Theo dõi (0) 1 Trả lời -
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 4.62 trang 122 SBT Toán 10
Bài tập 4.63 trang 122 SBT Toán 10
Bài tập 4.65 trang 123 SBT Toán 10
Bài tập 4.66 trang 123 SBT Toán 10
Bài tập 4.67 trang 123 SBT Toán 10
Bài tập 4.68 trang 123 SBT Toán 10
Bài tập 4.69 trang 123 SBT Toán 10
Bài tập 4.70 trang 123 SBT Toán 10
Bài tập 4.71 trang 124 SBT Toán 10
Bài tập 4.72 trang 124 SBT Toán 10
Bài tập 4.73 trang 124 SBT Toán 10
Bài tập 4.74 trang 124 SBT Toán 10
Bài tập 4.75 trang 124 SBT Toán 10
Bài tập 49 trang 140 SGK Toán 10 NC
Bài tập 50 trang 140 SGK Toán 10 NC
Bài tập 51 trang 141 SGK Toán 10 NC
Bài tập 52 trang 141 SGK Toán 10 NC
Bài tập 53 trang 145 SGK Toán 10 NC
Bài tập 54 trang 145 SGK Toán 10 NC
Bài tập 55 trang 145 SGK Toán 10 NC
Bài tập 56 trang 145 SGK Toán 10 NC
Bài tập 57 trang 146 SGK Toán 10 NC
Bài tập 58 trang 146 SGK Toán 10 NC
Bài tập 59 trang 146 SGK Toán 10 NC
Bài tập 60 trang 146 SGK Toán 10 NC
Bài tập 61 trang 146 SGK Toán 10 NC
Bài tập 62 trang 146 SGK Toán 10 NC
Bài tập 63 trang 146 SGK Toán 10 NC
Bài tập 64 trang 146 SGK Toán 10 NC
Bài tập 65 trang 151 SGK Toán 10 NC
Bài tập 66 trang 151 SGK Toán 10 NC
Bài tập 67 trang 151 SGK Toán 10 NC
Bài tập 68 trang 151 SGK Toán 10 NC
Bài tập 69 trang 154 SGK Toán 10 NC
Bài tập 70 trang 154 SGK Toán 10 NC
Bài tập 71 trang 154 SGK Toán 10 NC
Bài tập 72 trang 154 SGK Toán 10 NC
Bài tập 73 trang 154 SGK Toán 10 NC