Bài tập 17 trang 108 SGK Đại số 10

Giải bài 17 tr 108 sách GK Toán Đại số 10

Hệ bất phương trình sau vô nghiệm

(A) \(\left\{ \begin{array}{l}
{x^2} - 2x \le 0\\
2x + 1 < 3x + 2
\end{array} \right.\)

(B) \(\left\{ \begin{array}{l}
{x^2} - 4 > 0\\
\frac{1}{{x + 2}} < \frac{1}{{x + 1}}
\end{array} \right.\)

(C) \(\left\{ \begin{array}{l}
{x^2} - 5x + 2 < 0\\
{x^2} + 8x + 1 \le 0
\end{array} \right.\)

(D) \(\left\{ \begin{array}{l}
\left| {x - 1} \right| \le 2\\
\left| {2x + 1} \right| \le 3
\end{array} \right.\)

Hướng dẫn giải chi tiết

Chọn câu C

Ta có 

\({x^2} - 5x + 2 < 0\) có \({T_1} = \left( {\frac{{5 - \sqrt {17} }}{2};\frac{{5 + \sqrt {17} }}{2}} \right)\)

\({x^2} + 8x + 1 \le 0\) có \({T_2} = \left( { - 4 - \sqrt {17} ; - 4 + \sqrt {17} } \right)\)

Ta thấy \({T_1} \cap {T_2} = \emptyset \). Vậy hệ vô nghiệm 

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 17 trang 108 SGK Đại số 10 HAY thì click chia sẻ