YOMEDIA
NONE

Câu hỏi 4 trang 39 SGK Toán 9 Tập 1

Giải bài 4 tr 39 sách SGK Toán lớp 9 Tập 1

Phát biểu và chứng minh định lí về mối liên hệ giữa phép nhân và phép khai phương. Cho ví dụ. 

ATNETWORK

Hướng dẫn giải chi tiết

Phương pháp giải

Nếu \(x ≥ 0\) và \(x^2 = a\) thì \(x\) là căn bậc hai số học của số \(a\) không âm. 

Lời giải chi tiết

Định lí: Nếu \(a \ge 0\) và \(b \ge 0\) thì \(\sqrt {ab}  = \sqrt a .\sqrt b \)

Chứng minh:  Vì \(a \ge 0,b \ge 0 \Rightarrow ab \ge 0,\) do đó \(\sqrt a ,\sqrt b ,\sqrt {ab} \) đều xác định

Ta có: \({\left( {\sqrt a .\sqrt b } \right)^2} = {\left( {\sqrt a } \right)^2}.{\left( {\sqrt b } \right)^2} = a.b\)

Do \(\sqrt a  \ge 0,\sqrt b  \ge 0 \Rightarrow \sqrt a .\sqrt b  \ge 0\)

Vậy \(\sqrt a .\sqrt b \) là căn bậc hai số học của tích \(ab\) 

Hay \(\sqrt a .\sqrt b  = \sqrt {ab} \)

Ví dụ: \(\sqrt {49.36}  = \sqrt {49} .\sqrt {36} \)\( = 7.6 = 42\)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Câu hỏi 4 trang 39 SGK Toán 9 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON