Phần hướng dẫn giải bài tập Hình học 12 Chương 3 Bài 1 Hệ tọa độ trong không gian sẽ giúp các em nắm được phương pháp và rèn luyện kĩ năng các giải bài tập từ SGK Hình học 12 Cơ bản và Nâng cao.
-
Bài tập 1 trang 68 SGK Hình học 12
Cho ba vectơ \(\overrightarrow{a}=(2; -5; 3)\), \(\overrightarrow{b}=(0; 2; -1)\), \(\overrightarrow{c}=(1; 7; 2)\).
a) Tính tọa độ của vectơ \(\overrightarrow{d}=4.\overrightarrow{a}-\frac{1}{3}\overrightarrow{b}+3\overrightarrow{c}\).
b) Tính tọa độ của vectơ \(\overrightarrow{e}=\overrightarrow{a}-4\overrightarrow{b}-2\overrightarrow{c}\).
-
Bài tập 2 trang 68 SGK Hình học 12
Cho ba điểm A = (1; -1; 1), B = (0; 1; 2), C = (1; 0; 1).
Tìm tọa độ trọng tâm G của tam giác ABC.
-
Bài tập 3 trang 68 SGK Hình học 12
Cho hình hộp ABCD.A'B'C'D' biết A = (1; 0; 1), B = (2; 1; 2), D = (1; -1; 1), C'=(4; 5; -5). Tính tọa độ các đỉnh còn lại của hình hộp.
-
Bài tập 4 trang 68 SGK Hình học 12
Tính:
a) \(\overrightarrow{a}.\overrightarrow{b}\) với \(\overrightarrow{a}(3; 0; -6),\overrightarrow{b}(2; -4; 0)\).
b) \(\overrightarrow{c}.\overrightarrow{d}\) với \(\overrightarrow{c}(1; -5; 2),\overrightarrow{d}(4; 3; -5)\).
-
Bài tập 5 trang 68 SGK Hình học 12
Tìm tâm và bán kính của các mặt cầu có phương trình sau đây:
a) \(\small x^2 + y^2 + z^2 - 8x - 2y + 1 = 0\).
b) \(\small 3x^2 + 3y^2 + 3z^2 - 6x + 8y + 15z - 3 = 0\).
-
Bài tập 6 trang 68 SGK Hình học 12
Lập phương trình mặt cầu trong hai trường hợp sau đây:
a) Có đường kính AB với A(4 ; -3 ; 7), B(2 ; 1 ; 3)
b) Đi qua điểm A = (5; -2; 1) và có tâm C(3; -3; 1)
-
Bài tập 3.1 trang 102 SBT Hình học 12
Trong không gian Oxyz cho ba vecto \(\vec a = (2; - 1;2),\vec b = (3;0;1),\vec c = ( - 4;1; - 1)\). Tìm tọa độ của các vecto \(\vec m\) và \(\vec n\) biết rằng:
a) \(\vec m = 3\vec a - 2\vec b + \vec c\)
b) \(\vec n = 2\vec a + \vec b + 4\vec c\)
-
Bài tập 3.2 trang 102 SBT Hình học 12
Trong không gian Oxyz cho vecto \(\vec a = (1; - 3;4)\).
a) Tìm y0 và z0 để cho vecto \(\vec b = (2;{y_0};{z_0})\) cùng phương với \(\vec a\)
b) Tìm tọa độ của vecto \(\vec c\) biết rằng \(\vec a\) và \(\vec c\) ngược hướng và \(|\overrightarrow {c|} = 2|\vec a|\)
-
Bài tập 3.3 trang 102 SBT Hình học 12
Trong không gian Oxyz cho điểm M có tọa độ (x0; y0 ; z0). Tìm tọa độ hình chiếu vuông góc của điểm M trên các mặt phẳng tọa độ (Oxy), (Oyz), (Ozx).
-
Bài tập 3.4 trang 102 SBT Hình học 12
Cho hai bộ ba điểm:
a) A = (1; 3; 1) , B = (0; 1; 2) , C = (0; 0; 1)
b) M = (1; 1; 1) , N = (-4; 3; 1) , P = (-9; 5; 1)
Hỏi bộ nào có ba điểm thẳng hàng?
-
Bài tập 3.5 trang 102 SBT Hình học 12
Trong không gian Oxyz, hãy tìm trên mặt phẳng (Oxz) một điểm M cách đều ba điểm A(1; 1; 1), B(-1; 1; 0), C(3; 1; -1).
-
Bài tập 3.6 trang 102 SBT Hình học 12
Cho hình tứ diện ABCD. Chứng minh rằng:
a) \(\overrightarrow {AC} + \overrightarrow {BD} = \overrightarrow {AD} + \overrightarrow {BC} \)
b) \(\overrightarrow {AB} = \frac{1}{2}\overrightarrow {AC} + \frac{1}{2}\overrightarrow {AD} + \frac{1}{2}\overrightarrow {CD} + \overrightarrow {DB} \)
-
Bài tập 3.7 trang 102 SBT Hình học 12
Cho hình tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, BD, AD, BC. Chứng minh rằng:
a) \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} = 2\overrightarrow {MN} \)
b) \(\overrightarrow {AB} - \overrightarrow {CD} = \overrightarrow {AC} - \overrightarrow {BD} = 2\overrightarrow {PQ} \)
-
Bài tập 3.8 trang 102 SBT Hình học 12
Trong không gian cho ba vecto tùy ý \(\vec a,\vec b,\vec c\). Gọi \(\vec u = \vec a - 2\vec b,\vec v = 3\vec b - \vec c,{\rm{\vec w}} = 2\vec c - 3\vec a\).
Chứng tỏ rằng ba vecto \(\vec u,\vec v,{\rm{\vec w}}\) đồng phẳng.
-
Bài tập 3.9 trang 103 SBT Hình học 12
Trong không gian Oxyz cho một vecto \(\vec a\) tùy ý khác vecto \(\vec 0\). Gọi \(\alpha ,\beta ,\gamma \) là ba góc tạo bởi ba vecto đơn vị \(\vec i,\vec j,\vec k\) trên ba trục Ox, Oy, Oz và vecto \(\vec a\). Chứng minh rằng: \({\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1\)
-
Bài tập 3.10 trang 103 SBT Hình học 12
Cho hình tứ diện ABCD.
a) Chứng minh hệ thức: \(\overrightarrow {AB} .\overrightarrow {CD} + \overrightarrow {AC} .\overrightarrow {DB} + \overrightarrow {AD} .\overrightarrow {BC} = 0\)
b) Từ hệ thức trên hãy suy ra định lí: "Nếu một hình tứ diện có hai cặp cạnh đối diện vuông góc với nhau thì cặp cạnh đối diện thứ ba cũng vuông góc với nhau".
-
Bài tập 3.11 trang 103 SBT Hình học 12
Tính tích vô hướng của hai vecto \(\vec a,\vec b\) trong không gian với các tọa độ đã cho là:
a) \(\vec a = (3;0; - 6),\vec b = (2; - 4;c)\)
b) \(\vec a = (1; - 5;2),\vec b = (4;3; - 5)\)
c) \(\vec a = (0;\sqrt 2 ;\sqrt 3 ),\vec b = (1;\sqrt 3 ; - \sqrt 2 )\)
-
Bài tập 3.12 trang 103 SBT Hình học 12
Tính khoảng cách giữa hai điểm A và B trong mỗi trường hợp sau:
a) A(4; -1; 1) , B(2; 1; 0)
b) A(2; 3; 4) , B(6; 0; 4)
-
Bài tập 3.13 trang 103 SBT Hình học 12
Trong không gian Oxyz cho tam giác ABC có tọa độ các đỉnh là:
A(a; 0 ; 0), B(0; b; 0) , C(0; 0; c)
Chứng minh rằng tam giác ABC có ba góc nhọn.
-
Bài tập 3.14 trang 103 SBT Hình học 12
Trong không gian Oxyz hãy lập phương trình mặt cầu trong các trường hợp sau:
a) Có tâm I(5; -3; 7) và có bán kính r = 2.
b) Có tâm là điểm C(4; -4; 2) và đi qua gốc tọa độ;
c) Đi qua điểm M(2;-1;-3) và có tâm C(3; -2; 1)
-
Bài tập 3.15 trang 103 SBT Hình học 12
Trong không gian Oxyz hãy xác định tâm và bán kính các mặt cầu có phương trình sau đây:
a) x2 + y2 + z2 – 6x + 2y – 16z – 26 = 0 ;
b) 2x2 + 2y2 + 2z2 + 8x – 4y – 12z – 100 = 0
-
Bài tập 3.16 trang 103 SBT Hình học 12
Trong không gian Oxyz hãy viết phương trình mặt cầu đi qua bốn điểm A(1; 0; 0), B(0; -2; 0), C(0; 0; 4) và gốc tọa độ O. Hãy xác định tâm và bán kính của mặt cầu đó.
-
Bài tập 1 trang 81 SGK Hình học 12 NC
Cho
\(\begin{array}{l}
\vec u = \vec i - 2\vec j;\vec v = 3\vec i + 5\left( {\vec j - \vec k} \right){\rm{;}}\\
{\rm{\vec w}} = 2\vec i - \vec k + 3\vec j
\end{array}\)a) Tìm toạ độ của các vectơ đó.
b) Tìm côsin của các góc \(\left( {\vec v,\vec i} \right);\left( {\vec v,\vec j} \right);\left( {\vec v,\vec k} \right)\)
c) Tính các tích vô hướng \(\vec u.\vec v,\vec u.{\rm{\vec w}},\vec v.{\rm{\vec w}}\)
-
Bài tập 2 trang 81 SGK Hình học 12 NC
Cho vecto \(\overrightarrow u \) tùy ý khác \(\overrightarrow 0 \). Chứng minh \({\cos ^2}(\vec u,\vec i) + {\cos ^2}(\vec u,\vec j) + {\cos ^2}(\vec u,\vec k) = 1\)
-
Bài tập 3 trang 81 SGK Hình học 12 NC
Tìm góc giữa hai vecto \(\vec u\) và \(\vec v\) trong mỗi trường hợp sau:
a) \(\overrightarrow u = \left( {1;1;1} \right);\overrightarrow v = \left( {2;1; - 1} \right)\)
b) \(\vec u = 3\vec i + 4\vec j;\vec v = - 2\vec j + 3\vec k\)
-
Bài tập 4 trang 81 SGK Hình học 12 NC
Biết \(|\overrightarrow u | = 2;|\overrightarrow v | = 5\), góc giữa vecto \({\vec u}\) và \({\vec v}\) bằng \(\frac{{2\pi }}{3}\). Tìm vecto \(\overrightarrow p = k\overrightarrow u + 17\overrightarrow v \) vuông góc với vecto \(\overrightarrow q = 3\overrightarrow u - \overrightarrow v \)
-
Bài tập 5 trang 81 SGK Hình học 12 NC
Cho điểm M(a; b; c)
a) Tìm toạ độ hình chiếu (vuông góc) của M trên các mặt phẳng toạ độ và trên các trục toạ độ.
b) Tìm khoảng cách từ điểm M đến các mặt phẳng toạ độ, đến các trục toạ độ.
c) Tìm toạ độ của các điểm đối xứng với M qua các mặt phẳng toạ độ.
-
Bài tập 6 trang 81 SGK Hình học 12 NC
Cho hai điểm A(x1; y1; z1) và B(x2; y2; z2). Tìm toạ độ điểm M chia đoạn thẳng AB theo tỉ số k (tức là \(\overrightarrow {MA} = k\overrightarrow {MB} \)), trong đó k ≠ 1
-
Bài tập 7 trang 81 SGK Hình học 12 NC
Cho hình bình hành ABCD với A(-3 ; -2 ; 0), B(3 ; -3 ; 1), C(5 ; 0 ; 2). Tìm toạ độ đỉnh D và tính góc giữa hai vectơ \(\overrightarrow {AC} ,\overrightarrow {BD} \)
-
Bài tập 8 trang 81 SGK Hình học 12 NC
a) Tìm toạ độ điểm M thuộc trục Ox sao cho M cách đều hai điểm A(1 ; 2 ; 3) và B(-3 ; -3 ; 2).
b) Cho ba điểm A(2; 0; 4); B(4; \(\sqrt 3 \); 5) và C(sin5t, cos3t, sin3t). Tìm t để AB vuông góc với OC (O là gốc toạ độ).
-
Bài tập 9 trang 81 SGK Hình học 12 NC
Xét sự đồng phẳng của ba vectơ \(\overrightarrow u ,\overrightarrow v ,\overrightarrow w \) trong mỗi trường hợp sau:
\(\begin{array}{l}
a)\overrightarrow u (4;3;4),\overrightarrow v (2; - 1;2),\overrightarrow w (1;2;1)\\
b)\overrightarrow u (1; - 1;1),\overrightarrow v (0;1;2),\overrightarrow w (4;2;3)\\
c)\overrightarrow u (4;2;5),\overrightarrow v (3;1;3),\overrightarrow w (2;0;1)
\end{array}\) -
Bài tập 10 trang 81 SGK Hình học 12 NC
Cho ba điểm A(1; 0; 0); B(0; 0; 1); C(2; 1; 1)
a) Chứng minh A, B, C không thẳng hàng.
b) Tính chu vi và diện tích tam giác ABC.
c) Tính độ dài đường cao của tam giác ABC kẻ từ đỉnh A.
d) Tính các góc của tam giác ABC.
-
Bài tập 11 trang 81 SGK Hình học 12 NC
Cho bốn điểm A(1 ; 0 ; 0), B(0 ; 1 ; 0), C(0 ; 0 ; 1) và D(-2 ; 1 ; -2).
a) Chứng minh rằng A, B, C, D là bốn đỉnh của một hình tứ diện.
b) Tính góc giữa các đường thẳng chứa các cạnh đối của tứ diện đó.
c) Tính thể tích tứ diện ABCD và độ dài đường cao của tứ diện kẻ từ đỉnh A
-
Bài tập 12 trang 82 SGK Hình học 12 NC
Cho hình chóp S.ABC có đường cao SA = h, đáy là tam giác ABC vuông tại C, AC = b, BC = a. Gọi M là trung điểm của AC và N là điểm sao cho \(\overrightarrow {SN} = \frac{1}{3}\overrightarrow {SB} \)
a) Tính độ dài đoạn thẳng MN.
b) Tìm sự liên hệ giữa a, b, h để MN vuông góc với SB.
-
Bài tập 13 trang 82 SGK Hình học 12 NC
Tìm toạ độ tâm và tính bán kính của mỗi mặt cầu sau đây :
\(\begin{array}{l}
a){x^2} + {y^2} + {z^2} - 8x + 2y + 1 = 0\\
b)3{x^2} + 3{y^2} + 3{z^2} + 6x - 3y + 15z - 2 = 0\\
c)9{x^2} + 9{y^2} + 9{z^2} - 6x + 18y + 1 = 0
\end{array}\) -
Bài tập 14 trang 82 SGK Hình học 12 NC
Trong mỗi trường hợp sau, hãy viết phương trình mặt cầu :
a) Đi qua ba điểm A(0 ; 8 ; 0), B(4; 6 ; 2), C(0 ; 12 ; 4) và có tâm nằm trên mp(Oyz);
b) Có bán kính bằng 2, tiếp xúc với mặt phẳng (Oyz) và có tâm nằm trên tia Ox;
c) Có tâm I(1 ; 2 ; 3) và tiếp xúc với mp(Oyz).