YOMEDIA
NONE

Bài tập 3.10 trang 103 SBT Hình học 12

Giải bài 3.10 tr 103 SBT Hình học 12

Cho hình tứ diện ABCD.

a) Chứng minh hệ thức: \(\overrightarrow {AB} .\overrightarrow {CD}  + \overrightarrow {AC} .\overrightarrow {DB}  + \overrightarrow {AD} .\overrightarrow {BC}  = 0\)

b) Từ hệ thức trên hãy suy ra định lí: "Nếu một hình tứ diện có hai cặp cạnh đối diện vuông góc với nhau thì cặp cạnh đối diện thứ ba cũng vuông góc với nhau".

ATNETWORK

Hướng dẫn giải chi tiết

a) Ta có 

\(\overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AB} (\overrightarrow {AD}  - \overrightarrow {AC} ) = \overrightarrow {AB} .\overrightarrow {AD}  - \overrightarrow {AB} .\overrightarrow {AC} \)          (1)

\(\overrightarrow {AC} .\overrightarrow {DB}  = \overrightarrow {AC} (\overrightarrow {AB}  - \overrightarrow {AD} ) = \overrightarrow {AC} .\overrightarrow {AB}  - \overrightarrow {AC} .\overrightarrow {AD} \)          (2)

\(\overrightarrow {AD} .\overrightarrow {BC}  = \overrightarrow {AD} (\overrightarrow {AC}  - \overrightarrow {AB} ) = \overrightarrow {AD} .\overrightarrow {AC}  - \overrightarrow {AD} .\overrightarrow {AB} \)   (3)

Lấy  (1) + (2) + (3) ta có hệ thức cần chứng minh là:

\(\overrightarrow {AB} .\overrightarrow {CD}  + \overrightarrow {AC} .\overrightarrow {DB}  + \overrightarrow {AD} .\overrightarrow {BC}  = 0\)

b) Từ hệ thức trên ta suy ra định lí:  "Nếu tứ diện ABCD có \(AB \bot CD,AC \bot DB\), nghĩa là \(\overrightarrow {AB} .\overrightarrow {CD}  = 0\) và \(\overrightarrow {AC} .\overrightarrow {DB}  = 0\) thì \(\overrightarrow {AD} .\overrightarrow {BC}  = 0\) và do đó \(AD \bot BC\) ".

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 3.10 trang 103 SBT Hình học 12 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON