YOMEDIA

Bài tập 4 trang 68 SGK Hình học 12

Giải bài 4 tr 68 sách GK Toán Hình lớp 12

Tính:

a) \(\overrightarrow{a}.\overrightarrow{b}\) với \(\overrightarrow{a}(3; 0; -6),\overrightarrow{b}(2; -4; 0)\).

b) \(\overrightarrow{c}.\overrightarrow{d}\) với \(\overrightarrow{c}(1; -5; 2),\overrightarrow{d}(4; 3; -5)\).

ADSENSE

Hướng dẫn giải chi tiết bài 4

Phương pháp:

Biểu thức tọa độ của tích vô hướng: \(\left.\begin{matrix} \vec{a}=(x_1;y_1;z_1)\\ \vec{b}=(x_2;y_2;z_2) \end{matrix}\right\} \vec{a}.\vec{b} = x_1.x_2 + y_1.y_2 + z_1.z_2\)

Lời giải:

Ta có lời giải chi tiết câu a, b bài 4 như sau:

Câu a:

 \(\overrightarrow{a}.\overrightarrow{b} = 3.2 + 0.(-4) +(-6).0 = 6.\)

Câu b:

 \(\overrightarrow{c}.\overrightarrow{d} = 1.4 + (-5).3 + 2.(-5) = -21.\)

-- Mod Toán 12 HỌC247

Video hướng dẫn giải bài 4 SGK

Nếu bạn thấy hướng dẫn giải Bài tập 4 trang 68 SGK Hình học 12 HAY thì click chia sẻ 
  • hi hi

    Trong không gian Oxyz, cho hai điểm A(1;2;1), B(2;-1;3). Tìm điểm M trên mp Oxyz sao cho MA2 - 2MB2 lớn nhất

    A.\(M\left(\dfrac{3}{2};\dfrac{1}{2};0\right)\) B. \(M\left(\dfrac{1}{2};-\dfrac{3}{2};0\right)\) C. M(0;0;5) D. M(3;-4;0)

    Theo dõi (0) 3 Trả lời
  • thu hảo

    C​ho tứ diện đều ABCD, cạnh a. Gọi O là trọng tâm của tam giác BCD , I là trung điểm của OA. Tính khoảng cách từ I đến các mặt của tứ diện

    Theo dõi (0) 3 Trả lời
YOMEDIA