YOMEDIA
NONE

Bài tập 4 trang 57 SGK Giải tích 12

Giải bài 4 tr 57 sách GK Toán GT lớp 12

 Cho a, b là những số thực dương. Rút gọn các biểu thức sau:

a) \(\frac{a^{\frac{4}{3}}\left ( a^{\frac{-1}{3}}+ a^{\frac{2}{3}} \right )}{a^{\frac{1}{4}}\left ( a^{\frac{3}{4}}+ a^{\frac{-1}{4}} \right )}\).

b) \(\frac{b^{\frac{1}{5}}\left ( \sqrt[5]{b^{4}}- \sqrt[5]{b^{-1}} \right )}{b^{\frac{2}{3}}\left (\sqrt[3]{b}- \sqrt[3]{b^{-2}} \right )}\).

c) \(\frac{a^\frac{1}{3}.b^{-\frac{1}{3}}-a^{-\frac{1}{3}}.b^\frac{1}{3}}{\sqrt[3]{a^2}-\sqrt[3]{b^2}}\).

d) \(\frac{a^\frac{1}{3}.\sqrt{b}+b^{\frac{1}{3}}.\sqrt{a}}{\sqrt[6]{a^2}+\sqrt[6]{b^2}}\).

ATNETWORK

Hướng dẫn giải chi tiết bài 4

Nhận xét:

Đây là bài tập rèn luyện kĩ năng sử tính chất của lũy thừa, các em cần rèn luyện để ghi nhớ và biết cách sử dụng các tính chất để phục vụ cho việc giải các dạng toán khác sau này.

Lời giải:

Dưới đây là lời giải chi tiết các câu a, b, c, d bài 3:

Câu a:

\(\dfrac{{{a^{\frac{4}{3}}}\left( {{a^{\frac{{ - 1}}{3}}} + {a^{\frac{2}{3}}}} \right)}}{{{a^{\frac{1}{4}}}\left( {{a^{\frac{3}{4}}} + {a^{\frac{{ - 1}}{4}}}} \right)}} = \dfrac{{{a^{\frac{4}{3}}}{a^{\frac{{ - 1}}{3}}} + {a^{\frac{4}{3}}}{a^{\frac{2}{3}}}}}{{{a^{\frac{1}{4}}}{a^{\frac{3}{4}}} + {a^{\frac{1}{4}}}{a^{\frac{{ - 1}}{4}}}}}\)

\(= \dfrac{{{a^{\frac{4}{3} - \frac{1}{3}}} + {a^{\frac{4}{3} + \frac{2}{3}}}}}{{{a^{\frac{1}{4} + \frac{3}{4}}} + {a^{\frac{1}{4} + \frac{{ - 1}}{4}}}}} = \dfrac{{{a^1} + {a^2}}}{{{a^1} + {a^0}}} \\= {\dfrac{{a + a}}{{a + 1}}^2} = \dfrac{{a\left( {1 + a} \right)}}{{a + 1}} = a\) (Với \(a>0\)).

Câu b:

\(\dfrac{{{b^{\frac{1}{5}}}\left( {\sqrt[5]{{{b^4}}} - \sqrt[5]{{{b^{ - 1}}}}} \right)}}{{{b^{\frac{2}{3}}}\left( {\sqrt[3]{b} - \sqrt[3]{{{b^{ - 2}}}}} \right)}} = \dfrac{{{b^{\frac{1}{5}}}\left( {{b^{\frac{4}{5}}} - {b^{\frac{{ - 1}}{5}}}} \right)}}{{{b^{\frac{2}{3}}}\left( {{b^{\frac{1}{3}}} - {b^{\frac{{ - 2}}{3}}}} \right)}}\)

\( = \dfrac{{{b^{\frac{1}{5}}}.{b^{\frac{4}{5}}} - {b^{\frac{1}{5}}}.{b^{ - \frac{1}{5}}}}}{{{b^{\frac{2}{3}}}.{b^{\frac{1}{3}}} - {b^{\frac{2}{3}}}.{b^{ - \frac{2}{3}}}}}\)

\( = \dfrac{{{b^{\frac{1}{5} + \frac{4}{5}}} - {b^{\frac{1}{5} - \frac{1}{5}}}}}{{{b^{\frac{2}{3} + \frac{1}{3}}} - {b^{\frac{2}{3} - \frac{2}{3}}}}} = \dfrac{{b - 1}}{{b - 1}} = 1\) ( Với điều kiện \(b>0; \, b \neq 1\)).

Câu c:

\(\dfrac{{{a^{\frac{1}{3}}}{b^{\frac{{ - 1}}{3}}} - {a^{\frac{{ - 1}}{3}}}{b^{\frac{1}{3}}}}}{{\sqrt[3]{{{a^2}}} - {\rm{ }}\sqrt[3]{{{b^2}}}}}\)

\( = \dfrac{{{a^{ - \frac{1}{3} + \frac{2}{3}}}.{b^{\frac{{ - 1}}{3}}} - {a^{\frac{{ - 1}}{3}}}.{b^{ - \frac{1}{3} + \frac{2}{3}}}}}{{{a^{\frac{2}{3}}} - {b^{\frac{2}{3}}}}}\)

\(=\dfrac{{{a^{\frac{{ - 1}}{3}}}{b^{\frac{{ - 1}}{3}}}\left( {{a^{\frac{2}{3}}} - {b^{\frac{2}{3}}}} \right)}}{{{a^{\frac{2}{3}}} - {b^{\frac{2}{3}}}}} = {a^{\frac{{ - 1}}{3}}}{b^{\frac{{ - 1}}{3}}}\)

\( = {\left( {ab} \right)^{ - \frac{1}{3}}} = \frac{1}{{{{\left( {ab} \right)}^{\frac{1}{3}}}}} = \frac{1}{{\sqrt[3]{{ab}}}}\)

Với điều kiện: \(a \ne b;a,b > 0\)

Câu d:

\(\dfrac{{{a^{\frac{1}{3}}}\sqrt b + {b^{\frac{1}{3}}}\sqrt a }}{{\sqrt[6]{a} + {\rm{ }}\sqrt[6]{b}}} = \dfrac{{{a^{\frac{1}{3}}}{b^{\frac{1}{2}}} + {b^{\frac{1}{3}}}{a^{\frac{1}{2}}}}}{{{a^{\frac{1}{6}}} + {b^{\frac{1}{6}}}}} = \dfrac{{{a^{\frac{2}{6}}}{b^{\frac{3}{6}}} + {b^{\frac{2}{6}}}{a^{\frac{3}{6}}}}}{{{a^{\frac{1}{6}}} + {b^{\frac{1}{6}}}}}\)

\( = \dfrac{{{a^{\frac{2}{6}}}{b^{\frac{2}{6}}}\left( {{a^{\frac{1}{6}}} + {b^{\frac{1}{6}}}} \right)}}{{{a^{\frac{1}{6}}} + {b^{\frac{1}{6}}}}} = {a^{\frac{2}{6}}}{b^{\frac{2}{6}}} = {a^{\frac{1}{3}}}{b^{\frac{1}{3}}} = {\rm{ }}\sqrt[3]{{ab}}.\) (Với \(a, b > 0\)).

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 4 trang 57 SGK Giải tích 12 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON