YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số f(x) có đạo hàm \(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^3}\left( {x + 2} \right).\) Hàm số f(x) có mấy điểm cực trị?

    • A. 3
    • B. 2
    • C. 0
    • D. 1

    Lời giải tham khảo:

    Đáp án đúng: B

    Do \(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^3}\left( {x + 2} \right)\) có các nghiệm x = 0 (bội 2) nên loại.

    Ngoài ra f'(x) = 0 có hai nghiệm bội lẻ, đó là \({x_1} =  - 1;{x_2} =  - 2.\) 

    Vậy hàm số có có 2 điểm cực trị.

    ATNETWORK

Mã câu hỏi: 77341

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON