RANDOM

Bài tập 4 trang 62 SGK Đại số 10

Giải bài 4 tr 62 sách GK Toán ĐS lớp 10

Giải các phương trình

a) \(2x^4 -7x^2 + 5 = 0\);

b) \(3x^4 + 2x^2 - 1 = 0\).

ADSENSE

Hướng dẫn giải chi tiết bài 4

Câu a:

Đặt \(X = {x^2}(X \ge 0)\)

Ta có: \(2{X^2} - 7X + 5 = 0 \Leftrightarrow \left[ \begin{array}{l}X = \frac{5}{2}\\X = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x^2} = \frac{5}{2}\\{x^2} = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  \pm \frac{{\sqrt {10} }}{2}\\x =  \pm 1\end{array} \right.\)

Vậy \(S = \left\{ { - 1;1; - \frac{{\sqrt {10} }}{2};\frac{{\sqrt {10} }}{2}} \right\}\)

Câu b:

Đặt \(x = {X^2}(X \ge 0)\)

Ta có: \(3{X^2} + 2X - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}X =  - 1\,\,(loai)\\X = \frac{1}{3}\end{array} \right. \Leftrightarrow {x^2} = \frac{1}{3} \Leftrightarrow x =  \pm \frac{{\sqrt 3 }}{3}\)

Vậy \(S = \left\{ { - \frac{{\sqrt 3 }}{3};\frac{{\sqrt 3 }}{3}} \right\}\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 4 trang 62 SGK Đại số 10 HAY thì click chia sẻ 

 

RANDOM