YOMEDIA
NONE

Bài tập 54 trang 144 SBT Toán 7 Tập 1

Giải bài 54 tr 144 sách BT Toán lớp 7 Tập 1

Cho tam giác \(ABC\) có \(AB = AC.\) Lấy điểm \(D\) trên cạnh \(AB\), điểm \(E\) trên cạnh \(AC\) sao cho \(AD = AE.\)

a) Chứng minh rằng \( BE = CD.\)

b) Gọi \(O\) là giao điểm của \(BE\) và \(CD.\) Chứng minh rằng \(∆BOD = ∆COE\).

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

- Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.

- Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

Lời giải chi tiết

a) Xét \(∆BEA\) và \(∆CDA\) có:

\(BA = CA\) (gt)

\(\widehat A\) chung

\(AE = AD\) (gt)

\(\Rightarrow ∆BEA = ∆CDA\) (c.g.c)

\(\Rightarrow BE = CD\) (hai cạnh tương ứng) 

b) \(∆BEA = ∆CDA\) (chứng minh trên)

\(\Rightarrow \widehat {{B_1}} = \widehat {{C_1}};\widehat {{E_1}} = \widehat {{D_1}}\) (hai góc tương ứng)    (1)

\(\widehat {{E_1}} + \widehat {{E_2}} = 180^\circ \) (hai góc kề bù)    (2)

\(\widehat {{D_1}} + \widehat {{D_2}} = 180^\circ \) (hai góc kề bù)   (3)

Từ (1), (2) và (3) \( \Rightarrow \widehat {{E_2}} = \widehat {{D_2}}\)

Ta có: \(AB = AC\) (gt)

\( \Rightarrow  AE + EC  =  AD + DB\) mà \(AE = AD\) (gt) \( \Rightarrow EC = DB\)

Xét \(∆ODB\) và \(∆OEC\) có:

\(\widehat {{D_2}} = \widehat {{E_2}}\) (chứng minh trên)

\(DB = EC\) (chứng minh trên)

\(\widehat {{B_1}} = \widehat {{C_1}}\) (chứng minh trên)

\( \Rightarrow ∆ODB = ∆OEC \) (g.c.g)

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 54 trang 144 SBT Toán 7 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON