Phần hướng dẫn giải bài tập Toán 11 Chương 1 Bài 2 Phương trình lượng gác cơ bản sẽ giúp các em nắm được phương pháp và rèn luyện kĩ năng các giải bài tập từ SGK Đại số và Giải tích 11 Cơ bản-Nâng cao.
-
Bài tập 1 trang 28 SGK Đại số & Giải tích 11
Giải các phương trình sau:
a) \(\small sin (x + 2) =\frac{1}{3}\)
b) \(\small sin 3x = 1\)
c) \(\small sin (\frac{2x}{3} -\frac{\pi}{3}) =0\)
d) \(\small sin (2x + 20^0) =-\frac{\sqrt{3}}{2}\)
-
Bài tập 2 trang 28 SGK Đại số & Giải tích 11
Với những giá trị nào của x thì giá trị của các hàm số y = sin3x và y = sin x bằng nhau?
-
Bài tập 3 trang 28 SGK Đại số & Giải tích 11
Giải các phương trình sau:
a) \(\small cos (x - 1) =\frac{2}{3}\)
b) \(\small cos 3x = cos 12^0\)
c) \(\small cos (\frac{3x}{2}-\frac{\pi}{4})=-\frac{1}{2}\)
d)
.
-
Bài tập 4 trang 29 SGK Đại số & Giải tích 11
Giải phương trình sau
\(\small \frac{2cos2x}{1-sin2x}=0\)
-
Bài tập 5 trang 29 SGK Đại số & Giải tích 11
Giải các phương trình sau:
a) \(\small tan (x - 150) = \frac{\sqrt{3}}{3}\);
b) \(\small cot (3x - 1) = -\sqrt{3}\);
c) \(\small cos 2x . tan x = 0\);
d) \(\small sin 3x . cot x = 0\).
-
Bài tập 6 trang 29 SGK Đại số & Giải tích 11
Với những giá trị nào của x thì giá trị của các hàm số \(\small y = tan ( \frac{\pi}{4}- x)\) và \(\small y = tan2x\) bằng nhau?
-
Bài tập 7 trang 29 SGK Đại số & Giải tích 11
Giải các phương trình sau:
a) \(sin 3x - cos 5x = 0\);
b) \(\small tan 3x . tan x = 1\).
-
Bài tập 1.14 trang 23 SBT Toán 11
Giải các phương trình:
a) \(\sin 3x = - \frac{{\sqrt 3 }}{2}\)
b) \(\sin (2x - {15^o}) = \frac{{\sqrt 2 }}{2}\)
c) \(\sin (\frac{x}{2} + {10^o}) = - \frac{1}{2}\)
d) \(\sin 4x = \frac{2}{3}\)
-
Bài tập 1.15 trang 23 SBT Toán 11
Giải các phương trình:
a) \(\cos (x + 3) = \frac{1}{3}\)
b) \(\cos (3x - {45^o}) = \frac{{\sqrt 3 }}{2}\)
c) \(\cos (2x + \frac{\pi }{3}) = - \frac{1}{2}\)
d) \((2 + \cos x)(3\cos 2x - 1) = 0\)
-
Bài tập 1.16 trang 24 SBT Toán 11
Giải các phương trình:
a) tan(2x+45o) = −1
b) \(\cot(x + \frac{\pi }{3}) = \sqrt 3 \)
c) \(\tan \left( {\frac{x}{2} - \frac{\pi }{4}} \right) = \tan \frac{\pi }{8}\)
d) \(\cot (\frac{x}{3} + {20^o}) = - \frac{{\sqrt 3 }}{3}.\)
-
Bài tập 1.17 trang 24 SBT Toán 11
Giải các phương trình
a) cos3x−sin2x = 0
b) tanx.tan2x = −1
c) sin3x+sin5x = 0
d) cot2x.cot3x = 1.
-
Bài tập 1.18 trang 24 SBT Toán 11
Nghiệm của phương trình \(\sin 5x = \frac{{\sqrt 3 }}{2}\) là
A. \(\frac{{2\pi }}{{15}} + k\frac{{2\pi }}{5}\) và \(\frac{{4\pi }}{{15}} + k\frac{{2\pi }}{5}\) (\(k\in Z\))
B. \(\frac{{2\pi }}{{15}} + k\frac{{2\pi }}{5}\) và \(\frac{\pi }{{15}} + k\frac{{2\pi }}{5}\) (\(k\in Z\))
C. \(\frac{\pi }{{15}} + k\frac{{2\pi }}{5}\) và \(\frac{{2\pi }}{{15}} + k\frac{{2\pi }}{5}\) (\(k\in Z\))
D. \(\frac{\pi }{{15}} + k\frac{{2\pi }}{5}\) và \(\frac{{4\pi }}{{15}} + k\frac{{2\pi }}{5}\) (\(k\in Z\))