Bài 1: Nguyên hàm - Giải tích 12

10 trắc nghiệm 4 bài tập SGK

Thông qua bài học các em sẽ nắm được khái niệm, các tính chất của nguyên hàm. Bên cạnh đó bài học còn giới thiệu đến các em công thức tìm nguyên hàm của một số hàm số cơ bản, các phương pháp tìm nguyên hàm của một hàm số là phương pháp đổi biến số phương pháp nguyên hàm từng phần.

Tóm tắt lý thuyết

1. Nguyên hàm và tính chất

a) Khái niệm nguyên hàm

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng của \(\mathbb{R}.\)

Định nghĩa:

Cho hàm số \(f(x)\) xác định trên K.

Hàm số \(F(x)\) được gọi là nguyên hàm của hàm số \(f(x)\) trên K nếu \(F'(x) = f(x)\) với mọi \(x \in K.\)

Định lý 1:

Nếu \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên K thì với mỗi hằng số C, hàm số \(G(x) = F(x)+C\) cũng là một nguyên hàm của hàm số \(f(x)\) trên K.

Định lý 2:

Nếu \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên K thì mọi nguyên hàm của \(f(x)\) trên K đều có dạng \(F(x)+C\) với \(C\) là một hằng số tùy ý.

Kí hiệu họ nguyên hàm của hàm số \(f(x)\) là \(\int f(x)dx.\)

Khi đó : \(\int f(x)dx=F(x)+C,C\in \mathbb{R}.\)

b) Tính chất

  • Tính chất 1: \(\int f'(x)dx=f(x)+C,C\in \mathbb{R}.\)
  • Tính chất 2: \(\int fk(x)dx=k\int f(x)dx\) (với k là hằng số khác 0).
  • Tính chất 2: \(\int {\left( {f(x) \pm g(x)} \right)dx} = \int {f(x)dx} \pm \int {g(x)dx}.\)

c) Sự tồn tại của nguyên hàm

Định lí 3:

Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.

d) Nguyên hàm của một số hàm số thường gặp

  • Nguyên hàm của các hàm số sơ cấp thương gặp:
    • \(\int {kdx = kx + C,\,k \in \mathbb{R}}\)
    • \(\int {{x^\alpha }dx = \frac{1}{{1 + \alpha }}.{x^{\alpha + 1}} + C\,(\alpha \ne - 1)}\)
    • \(\int {\frac{{dx}}{x} = \ln \left| x \right| + C}\)
    • \(\int {\frac{{dx}}{{\sqrt x }} = 2\sqrt x + C}\)
    • \(\int {{e^x}dx = {e^x} + C}\)
    • \(\int {{a^x}dx = \frac{{{a^x}}}{{\ln a}} + C\,\,(0 < a \ne 1)}\)
    • \(\int {\cos xdx = \sin x + C}\)
    • \(\int {\sin xdx = - \cos x + C}\)
    • \(\int {\frac{{dx}}{{{{\cos }^2}x}} = \tan x + C}\)
    • \(\int {\frac{{dx}}{{{{\sin }^2}x}} = - \cot x + C}\)
  • Ngoài ra còn có một số công thức thường gặp khác:
    • \(\int {{{({\rm{ax}} + b)}^k}dx = \frac{1}{a}\frac{{{{{\rm{(ax}} + b)}^{k + 1}}}}{{k + 1}}\, + C\,,(a \ne 0,\,k \ne - 1)}\)
    • \(\int {\frac{1}{{{\rm{ax}} + b}}dx = \frac{1}{a}\ln \left| {{\rm{ax}} + b} \right|} + C,\,a \ne 0\)
    • \(\int {{e^{{\rm{ax}} + b}}dx = \frac{1}{a}{e^{{\rm{ax}} + b}} + C}\)
    • \(\int {c{\rm{os}}({\rm{ax}} + b)dx = \frac{1}{a}\sin ({\rm{ax}} + b)} + C\)
    • \(\int {\sin ({\rm{ax}} + b)dx = - \frac{1}{a}c{\rm{os}}({\rm{ax}} + b)} + C\)

2. Các phương pháp tính nguyên hàm

a) Phương pháp đổi biến số

Định lí 1:

Cơ sở của phương pháp đổi biến số là định lý sau: Cho hàm số \(u = u(x)\) có đạo hàm và liên tục trên K và hàm số \(y = f({\rm{u)}}\) liên tục sao cho \(f[u(x)]\) xác định trên K. Khi đó nếu \(F\) là một nguyên hàm của \(f\), tức là \(\int {f(u)du = F(u) + C}\) thì \(\int {f[u(x){\rm{]dx = F[u(x)] + C}}}.\)

Hệ quả:

Với \(u = ax + b\,(a \ne 0),\) ta có:

\(\int {f(ax + b)dx} = \frac{1}{a}F(ax + b) + C\)

b) Phương pháp tính nguyên hàm từng phần

Định lí 2: 

Nếu hai hàm số \(u=u(x)\) và \(v=v(x)\) có đạo hàm và liên tục trên K thì:

\(\int {u(x)v'(x)dx} = u(x)v(x) - \int {u'(x)v(x)dx}\)

Một số dạng thường gặp:

  • Dạng 1: \(\int {P(x).{e^{{\rm{ax}} + b}}dx\,,\,\,\int {P(x)\sin ({\rm{ax}} + b)dx\,,\,\int {P(x)c{\rm{os}}({\rm{ax}} + b)dx} } }\)

Cách giải: Đặt \(u = P(x)\,,\,dv = {e^{{\rm{ax}} + b}}dx\,\) hoặc \(dv = \sin (ax + b)dx,\,\,dv = \cos (ax + b)dx.\)

  • Dạng 2: \(\int {P(x)\ln ({\rm{ax}} + b)dx}\)

Cách giải: Đặt \(u = \ln ({\rm{ax}} + b)\,,\,dv = P(x)dx.\)

Bài tập minh họa

Ví dụ 1:

Áp dụng công thức nguyên hàm cơ bản, tính nguyên hàm sau:

a) \(I = \int {{x^8}dx\)

b) \(I=\int \left ( x^2+2x \right )^2dx\)

c) \(I=\int \frac{1}{x^5}dx\)

d) \(I=\int\frac{1}{2x}dx\)

Lời giải:

a) \(I = \int {{x^8}dx = \frac{1}{9}{x^9} + C}\)

b) \(I = \int {{{\left( {{x^2} + 2x} \right)}^2}dx = \int {\left( {{x^4} + 4{x^3} + 4{x^2}} \right)dx = \frac{1}{5}{x^5} + {x^4} + \frac{4}{3}{x^3} + C} }\)

c) \(I = \int {\frac{{dx}}{{{x^5}}} = \int {{x^{ - 5}}dx = \frac{1}{{ - 5 + 1}}{x^{ - 5 + 1}} + C = } } - \frac{1}{4}{x^{ - 4}} + C\)

d) \(I = \int {\frac{{dx}}{{2x}}} = \frac{1}{2}\int {\frac{{dx}}{x} = \frac{1}{2}\ln \left| x \right| + C}\)

Ví dụ 2:

Dùng phương pháp đổi biến số tính các nguyên hàm sau:

a) \(I = \int {\sqrt {{x^{2004}} + 1} .{x^{2003}}dx}\)

b) \(I = \int {{e^{{e^x} + x}}dx}\)

c) \(I = \int {{e^{2{x^2} + \ln {\rm{x}}}}dx}\)

d) \(I = \int {\frac{x}{{\sqrt[{10}]{{x + 1}}}}} dx\)

e) \(I=\int {\frac{{\sin x.{{\cos }^3}x}}{{1 + {{\cos }^2}x}}dx}\)

Lời giải:

a) Đặt: \(t = {x^{2004}} + 1 \Rightarrow dt = 2004{x^{2003}}dx \Rightarrow {x^{2003}}dx = \frac{1}{{2004}}dt.\)

Từ đó ta được: 

\(I = \frac{1}{{2004}}\int {\sqrt t dt} = \frac{1}{{2004}}\int {{t^{\frac{1}{2}}}dt} = \frac{1}{{2004}}.\frac{2}{3}{t^{\frac{3}{2}}} + C\)

\(= \frac{1}{{3006}}\sqrt {{t^3}} + C = \frac{1}{{3006}}\sqrt {{{\left( {{x^{2004}} + 1} \right)}^3}} + C\)

b) Ta có: \({e^{{e^x} + x}} = {e^{{e^x}}}.{e^x}\)

Đặt: \({e^x} = t \Rightarrow {e^x}dx = dt\)

Từ đó ta được:

\(I = \int {{e^t}dt} = \int {{e^t}dt} = {e^t} + C = {e^{{e^x}}} + C\)

c) Ta có: \(M = \int {{e^{2{x^2}}}.{e^{\ln x}}dx = } \int {{e^{2{x^2}}}.xdx}\)

Đặt: \(2{x^2} = t \Rightarrow 4xdx = dt \Rightarrow xdx = \frac{{dt}}{4}\)

Ta được: \(M = \int {{e^t}\frac{{dt}}{4} = \frac{1}{4}{e^t} + C = \frac{1}{4}{e^{2{x^2}}}} + C.\)

d) \(I = \int {\frac{x}{{\sqrt[{10}]{{x + 1}}}}} dx\)

Đặt: \(\sqrt[{10}]{{x + 1}} = t \Rightarrow x + 1 = {t^{10}} \Rightarrow dx = 10{t^9}dt\)

Ta được:

\(\begin{array}{l} N = \int {\frac{{{t^{10}} - 1}}{t}.10{t^9}dt} = 10\int {\left( {{t^{10}} - 1} \right){t^8}dt} \\ = 10\int {\left( {{t^{18}} - {t^8}} \right)dt} = \frac{{10}}{{19}}{t^{19}} - \frac{{10}}{9}{t^9} + C \end{array}\)

 \(\, = \frac{{10}}{{19}}\sqrt[{10}]{{{{\left( {x + + 1} \right)}^{19}}}} - \frac{{10}}{9}\sqrt[{10}]{{{{\left( {x + 1} \right)}^9}}} + C\)

e) Ta có:\(I = \int {\frac{{\sin x.{{\cos }^3}x}}{{1 + {{\cos }^2}x}}dx = \frac{1}{2}\int {\frac{{2\sin x\cos x.{{\cos }^2}x}}{{1 + {{\cos }^2}x}}} } dx = \frac{1}{2}\int {\frac{{{{\cos }^2}x}}{{1 + {{\cos }^2}x}}.\sin 2xdx}\)

Đặt: \(1 + {\cos ^2}x = t \Rightarrow \sin 2xdx = - dt\)

\(\Rightarrow S = - \frac{1}{2}\int {\frac{{t - 1}}{t}dt} = - \frac{1}{2}\int {dt + \frac{1}{2}\int {\frac{{dt}}{t}} = - \frac{1}{2}t + \frac{1}{2}\ln \left| t \right| + C}\)

Ví dụ 3: 

Dùng phương pháp nguyên hàm từng phần tính các nguyên hàm sau:

a) \(I = \int {x{\rm{sin2}}xdx}\)

b) \(I = \int {{x^2}{e^{2x}}dx}\)

c) \(I = \int {\left( {2{x^2} + x + 1} \right){e^x}dx}\)

d) \(I = \int {x{{\cos }^2}2xdx}\)

Lời giải:

a) Đặt \(\left\{ \begin{array}{l} u = x\\ dv = \sin 2xdx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = dx\\ v = - \frac{1}{2}\cos 2x \end{array} \right.\)

\(\Rightarrow I = - \frac{1}{2}x\cos 2x + \frac{1}{2}\int {\cos 2xdx} = - \frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x + C\)

b) Đặt: \(\left\{ \begin{array}{l} u = {x^2}\\ dv = {e^{2x}}dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = 2xdx\\ v = \frac{1}{2}{e^{2x}} \end{array} \right.\)\(\Rightarrow I = \frac{1}{2}{x^2}{e^{2x}} - \int {x{e^{2x}}dx} = \frac{1}{2}{x^2}{e^{2x}} - {I_1}\)

Tính \({I_1} = \int {x{e^{2x}}dx}\)

Đặt: \(\left\{ \begin{array}{l} u = x\\ dv = {e^{2x}}dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = dx\\ v = \frac{1}{2}{e^{2x}} \end{array} \right.\)

\(\Rightarrow {I_1} = \frac{1}{2}x{e^{2x}} - \frac{1}{2}\int {{e^{2x}}dx} = \frac{1}{2}x{e^{2x}} - \frac{1}{4}{e^{2x}} + C\)

Vậy: \(I = \frac{1}{2}{x^2}{e^{2x}} - \frac{1}{2}x{e^{2x}} + \frac{1}{4}{e^{2x}} + C = \frac{{\left( {2{x^2} - 2x + 1} \right){e^{2x}}}}{4} + C\)

c) Đặt: \(\left\{ \begin{array}{l} u = 2{x^2} + x + 1\\ dv = {e^x}dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = \left( {4x + 1} \right)dx\\ v = {e^x} \end{array} \right.\)

\(\Rightarrow I = \left( {2{x^2} + x + 1} \right){e^x} - \int {\left( {4x + 1} \right){e^x}dx}\)

Tính: \({I_1} = \int {\left( {4x + 1} \right){e^x}dx}\)

Đặt: \(\left\{ \begin{array}{l} u = 4x + 1\\ dv = {e^x}dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = 4dx\\ v = {e^x} \end{array} \right.\)

 \(\Rightarrow {I_1} = \left( {4x + 1} \right){e^x} - 4\int {{e^x}dx} = \left( {4x + 1} \right){e^x} - 4{e^x} + C = \left( {4x - 3} \right){e^x} + C\)

\(\Rightarrow I = \left( {2{x^2} + x + 1} \right){e^x} - \left( {4x - 3} \right){e^x} + C = \left( {2{x^2} - 3x + 4} \right){e^x} + C\)

d) 

\(\begin{array}{l} I = \int {x{{\cos }^2}2xdx} = \int {x.\frac{{1 + \cos 4x}}{2}} dx\\ = \frac{1}{2}\int {xdx} + \int {\frac{1}{2}x\cos 4xdx} = \frac{1}{4}{x^2} + {I_1} \end{array}\)

Tính \({I_1} = \int {\frac{1}{2}x\cos 4xdx}\)

Đặt: \(\left\{ \begin{array}{l} u = \frac{1}{2}x\\ dv = \cos 4xdx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = \frac{1}{2}dx\\ v = \frac{1}{4}\sin 4x \end{array} \right.\)

\(\Rightarrow {I_1} = \frac{1}{8}x\sin 4x - \frac{1}{8}\int {\sin 4xdx} = \frac{1}{8}x\sin 4x + \frac{1}{{32}}\cos 4x + C\)

Vậy: \(I = \frac{1}{4}{x^2} + \frac{1}{8}x\sin 4x + \frac{1}{{32}}\cos 4x + C\)

-- Mod Toán Học 12 HỌC247