YOMEDIA
NONE

Bài tập 1 trang 23 SBT Toán 8 Tập 1

Giải bài 1 tr 23 sách BT Toán lớp 8 Tập 1

Dùng định nghĩa hai phân thức bằng nhau chứng minh các đẳng thức sau:

a. \({{{x^2}{y^3}} \over 5} = {{7{x^3}{y^4}} \over {35xy}}\)

b. \({{{x^2}\left( {x + 2} \right)} \over {x{{\left( {x + 2} \right)}^2}}} = {x \over {x + 2}}\)

c. \({{3 - x} \over {3 + x}} = {{{x^2} - 6x + 9} \over {9 - {x^2}}}\)

d. \({{{x^3} - 4x} \over {10 - 5x}} = {{ - {x^2} - 2x} \over 5}\)

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Lời giải chi tiết

a. \({x^2}{y^3}.35xy = 35{x^3}{y^4};5.7{x^3}{y^4} = 35{x^3}{y^4}\)

\( \Rightarrow {x^2}{y^3}.35xy = 5.7{x^3}{y^4}\). Vậy \({{{x^2}{y^3}} \over 5} = {{7{x^3}{y^4}} \over {35xy}}\)

b. \({x^2}\left( {x + 2} \right).\left( {x + 2} \right) = {x^2}{\left( {x + 2} \right)^2};x{\left( {x + 2} \right)^2}.x = {x^2}{\left( {x + 2} \right)^2}\)

\( \Rightarrow {x^2}\left( {x + 2} \right).\left( {x + 2} \right) = x{\left( {x + 2} \right)^2}x\).

Vậy \({{{x^2}\left( {x + 2} \right)} \over {x{{\left( {x + 2} \right)}^2}}} = {x \over {x + 2}}\)

c. \(\left( {3 - x} \right)\left( {9 - {x^2}} \right) = 27 - 3{x^2} - 9x + {x^3}\)

\(\left( {3 + x} \right)\left( {{x^2} - 6x + 9} \right) = 3{x^2} - 18x + 27 + {x^3} - 6{x^2} + 9x = 27 - 3{x^2} - 9x + {x^3}\)

\( \Rightarrow \left( {3 - x} \right)\left( {9 - {x^2}} \right) = \left( {3 + x} \right)\left( {{x^2} - 6x + 9} \right)\).

Vậy \({{3 - x} \over {3 + x}} = {{{x^2} - 6x + 9} \over {9 - {x^2}}}\)

d. \(\left( {{x^3} - 4x} \right).5 = 5{x^3} - 20x;\left( {10 - 5x} \right)\left( { - {x^2} - 2x} \right) =  - 10{x^2} - 20x + 5{x^3} + 10{x^2} = 5{x^3} - 20x\)

\( \Rightarrow \left( {{x^3} - 4x} \right).5 = \left( {10 - 5x} \right)\left( { - {x^2} - 2x} \right)\)

Vậy \({{{x^3} - 4x} \over {10 - 5x}} = {{ - {x^2} - 2x} \over 5}\)

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 1 trang 23 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON