ON
YOMEDIA
VIDEO_3D

Bài tập 9 trang 110 SGK Toán 10 NC

Bài tập 9 trang 110 SGK Toán 10 NC

Chứng minh rằng nếu  a ≥ 0 và b > 0 thì 

\(\frac{{a + b}}{2}.\frac{{{a^2} + {b^2}}}{2} \le \frac{{{a^3} + {b^3}}}{2}\)

VDO.AI

Hướng dẫn giải chi tiết

 
 

Ta có:

\(\begin{array}{l}
\frac{{a + b}}{2}.\frac{{{a^2} + {b^2}}}{2} \le \frac{{{a^3} + {b^3}}}{2}\\
 \Leftrightarrow {a^3} + a{b^2} + {a^2}b + {b^3} \le 2{a^3} + 2{b^3}\\
 \Leftrightarrow {a^3} - a{b^2} - {a^2}b + {b^3} \ge 0\\
 \Leftrightarrow \left( {a - b} \right)\left( {{a^2} - {b^2}} \right) \ge 0\\
 \Leftrightarrow {\left( {a - b} \right)^2}\left( {a + b} \right) \ge 0\left( {ld} \right)
\end{array}\)

Vậy \(\frac{{a + b}}{2}.\frac{{{a^2} + {b^2}}}{2} \le \frac{{{a^3} + {b^3}}}{2}\)

-- Mod Toán 10 HỌC247

 
Nếu bạn thấy hướng dẫn giải Bài tập 9 trang 110 SGK Toán 10 NC HAY thì click chia sẻ 
YOMEDIA

 

YOMEDIA
1=>1
Array
(
    [0] => Array
        (
            [banner_bg] => 
            [banner_picture] => 809_1633914298.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://kids.hoc247.vn/ma-tk-vip/?utm_source=hoc247net&utm_medium=PopUp&utm_campaign=Hoc247Net
            [banner_startdate] => 2021-09-01 00:00:00
            [banner_enddate] => 2021-10-31 23:59:59
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)