YOMEDIA
NONE

Bài tập 18 trang 112 SGK Toán 10 NC

Bài tập 18 trang 112 SGK Toán 10 NC

Chứng minh rằng với mọi số thực a, b, ta có:

(a + b + c)2 ≤ 3(a2 + b2 + c2)

ATNETWORK

Hướng dẫn giải chi tiết

Ta có:

(a + b + c)2 ≤ 3(a2 + b2 + c2)

⇔ a2 + b2 + c2 +2ab + 2bc + 2ca

≤ 3a2 + 3b2 + 3c2

⇔ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0

⇔ (a – b)+ (b – c)2 + (c – a)2 ≥ 0  (luôn đúng)

Vậy (a + b + c)2 ≤ 3(a2 + b2 + c2)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 18 trang 112 SGK Toán 10 NC HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON