YOMEDIA
NONE

Bài tập 3 trang 34 SGK Hình học 10 NC

Bài tập 3 trang 34 SGK Hình học 10 NC

Gọi \(O\) là tâm của hình bình hành \(ABCD\). Chứng minh rằng với điểm \(M\) bất kì, ta có

\(\overrightarrow {MO}  = {1 \over 4}(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD} ).\)

ATNETWORK

Hướng dẫn giải chi tiết

Do \(ABCD\) là hình bình hành nên \(O\) là trung điểm của \(AC, BD\).

Suy ra \(\overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow 0 \,,\,\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow 0 \,.\) 

Ta có

\(\eqalign{
& \overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} \cr&= \overrightarrow {MO} + \overrightarrow {OA} + \overrightarrow {MO} + \overrightarrow {OB} + \overrightarrow {MO} + \overrightarrow {OC} + \overrightarrow {MO} + \overrightarrow {OD} \cr 
& = 4\overrightarrow {MO} + \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = 4\overrightarrow {MO} \cr 
& \Rightarrow \overrightarrow {MO} = {1 \over 4}(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} ). \cr} \)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 3 trang 34 SGK Hình học 10 NC HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON