Toán 10 Bài 2: Tập hợp

Lý thuyếtTrắc nghiệmBT SGK FAQ

Tập hợp là một khái niệm các em đã được tìm hiểu ở chương trình Toán 6. Chương trình Đại số 10, tiếp tục kế thừa và giới thiệu đến các em thêm những khái niệm, dạng bài tập mới. Xin mời các em cùng tìm hiểu nội dung bài học.

Quảng cáo

Tóm tắt lý thuyết

1.1. Tập hợp

  • Tập hợp là khái niệm cơ bản của toán học, không định nghĩa .
  • Tập hợp thường được kí hiệu bằng các chữ cái in hoa như: A, B, C, D, .... các phần tử của tập hợp đặt trong cặp dấu { }.
  • Để chỉ phần tử a thuộc tập hợp A ta viết \(a \in A,\) ngược lại ta viết \(a \notin A.\)
  • Tập hợp không chứa phần tử nào gọi là tập rỗng. Khí hiệu \(\emptyset .\)

1.2. Cách xác định tập hợp

Có 2 cách:

  • Cách 1: Liệt kê các phần tử : mỗi phần tử liệt kê một lần, giữa các phần tử có dấu phẩy hoặc dấu chấm phẩy ngăn cách. Nếu số lượng phần tử nhiều có thể dùng dấu ba chấm.

Ví dụ:

A = {1; 3; 5; 7}

B = {0 ; 1; 2; . . . . ; 100 }

C= {1; 3; 5;…;15; 17}

  • Cách 2: Chỉ rõ tính chất đặc trưng của các phần tử trong tập hợp, tính chất này được viết sau dấu gạch đứng.

Ví dụ:

A = {\(x \in \mathbb{N}\) | x lẻ và x <9}; B= {\(x \in \mathbb{R}\)| 2x2-5x+3=0}

1.3. Tập con

  • Nếu tập A là con của B, kí hiệu: \(A \subset B\) hoặc \(B \supset A.\) .
  • Khi đó \(A \subset B \Leftrightarrow \forall x\left( {x \in A \Rightarrow x \in B} \right)\)

Ví dụ:

A={1;3;5;7;9}, B={1;2;3;...;10}

Cho \(A \ne \emptyset \) có ít nhất 2 tập con là \(\emptyset \) và A.

Tính chất:    

\(A \subset A,\emptyset  \subset A\)  với mọi A.

Nếu \(A \subset B\) và \(B \subset C\) thì \(A \subset C.\)

1.4. Tập hợp bằng nhau

\(A = B \Leftrightarrow A \subset B\) và \(B \subset A\) hay \(A = B \Leftrightarrow \forall x\left( {x \in A \Leftrightarrow x \in B} \right)\)

Ví dụ:

\(\begin{array}{l}C = \left\{ {x \in \mathbb{R}|2{x^2} - 5x + 2 = 0} \right\}\\D = \left\{ {\frac{1}{2};1} \right\}\\ \Rightarrow C = D.\end{array}\)

  • Biểu đồ Ven

Biểu đồ Ven các tập số

Ta có \(\mathbb{N}* \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}\)

Bài tập minh họa

Ví dụ 1:

Cho các tập hợp sau:

a) Tập hợp A là các nghiệm của phương trình \((x + 1)(x + 3)\left( {x - \frac{1}{2}} \right) = 0.\)

b) Tập \(B = \left\{ {m \in \mathbb{Z}|{m^2} \le 50} \right\}\)

Hãy liệt kê tất cả các phần tử của chúng.

Hướng dẫn giải:

a) \(A = \left\{ { - 3; - 1;\frac{1}{2}} \right\}\)

b) \(B = \left\{ { - 7; - 6; - 5; - 4; - 3; - 2; - 1;0;1;2;3;4;5;6;7} \right\}.\)

 

Ví dụ 2:

Tìm tất cả các tập hợp con của tập hợp \(A = \left\{ { - 3;0;2} \right\}.\)

Hướng dẫn giải:

Tập A có 8 tập hợp con là: \(\emptyset ,\left\{ { - 3} \right\},\left\{ 0 \right\},\left\{ 2 \right\},\left\{ { - 3;0} \right\},\left\{ { - 3;2} \right\},\left\{ {0;2} \right\},\left\{ { - 3;0;2} \right\}.\)

 

Ví dụ 3:

Tìm các tính chất đặc trưng của các tập hợp sau:

a) \(A = \left\{ {1;\frac{1}{2};\frac{1}{3};\frac{1}{4};\frac{1}{5};\frac{1}{6}} \right\}\)

b) \(B = \left\{ {\frac{5}{4};\frac{{10}}{9};\frac{{17}}{{16}};\frac{{26}}{{25}};\frac{{37}}{{36}};\frac{{50}}{{49}}} \right\}.\)

Hướng dẫn giải:

a) \(A = \left\{ {\frac{1}{n}|n \in \mathbb{N},1 \le n \le 6} \right\}.\)

b) \(B = \left\{ {\frac{{{n^2} + 1}}{{{n^2}}}|n \in \mathbb{N},2 \le n \le 7} \right\}.\)

3. Luyện tập Bài 2 chương 1 đại số 10

Trong phạm vi bài học HỌC247 chỉ giới thiệu đến các em những nội dung cơ bản nhất về khái niệm cơ bản nhất của mệnh đề. Về các thuật ngữ có vẻ hết sức quen thuộc. Khái niệm Tập hợp các em đã bước đầu được tìm hiểu ở chương trình Toán lớp 6, lên bậc THPT chúng ta sẽ được học nâng cao hơn, các em cần tìm hiểu thêm.

3.1 Trắc nghiệm về tập hợp

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 10 Chương 1 Bài 2 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

  • Câu 1:

    Hãy liệt kê các phần tử của tập hợp: \(X = \left\{ {x \in \mathbb{R}|{x^2} + x + 1 = 0} \right\}\)

    • A. \(X = 0\)
    • B. \(X = \left\{ 0 \right\}\)
    • C. \(X = \emptyset \)
    • D. \(X = \left\{ \emptyset  \right\}\)
  • Câu 2:

    Trong các mệnh đề sau, tìm mệnh đề sai?

    • A. \(A \in A\)
    • B. \(\emptyset  \subset A\)
    • C. \(A \subset A\)
    • D. \(A \in \left\{ A \right\}\)
  • Câu 3:

    Cho tập hợp \(A = \left\{ {1;2;\left\{ {3;4} \right\};x;y} \right\}.\)

    Xét các mệnh đề dưới đây:

    \(\begin{array}{l}(I):3 \in A\\(II):\left\{ {3;4} \right\} \in A\\(III):\left\{ {a;3;b} \right\} \notin A\end{array}\)

    Chọn phương án đúng?

    • A. Chỉ I đúng.
    • B. I, II đúng.
    • C. II, III đúng.
    • D. Cả I, II, III đều đúng.
  • Câu 4:

    Tập hợp \(X = \left\{ {0;1;2} \right\}\) có bao nhiêu tập hợp con?

    • A. 3
    • B. 6
    • C. 7
    • D. 8

Câu 5- Câu 13: Xem thêm phần trắc nghiệm để làm thử Online 

3.2 Bài tập SGK và Nâng Cao về tập hợp

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 10 Chương 1 Bài 2 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Đại số 10 Cơ bản và Nâng cao.

Bài tập 1 trang 13 SGK Đại số 10

Bài tập 2 trang 13 SGK Đại số 10

Bài tập 3 trang 13 SGK Đại số 10

4. Hỏi đáp về bài 2 chương 1 đại số 10

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em. 

  • a) Cho A = {x ∈ N| x < 20 và x chia hết cho 3}
    Hãy liệt kê các phân tử của tập hợp A.

    b) Cho tập hợp B = {2, 6, 12, 20, 30}.

    Hãy xác định B bằng cách chỉ ra một tính chất đặc trưng cho các phần tử của nó

    Theo dõi (0) 1 Trả lời
  • Tìm tất cả các tập con của tập hợp sau

    a) A = {a, b};

    b) B = {0, 1, 2}.

    Theo dõi (0) 1 Trả lời
  • Bài 21 (SBT trang 11)

    1. Tìm tất cả các tập hợp con của các tập hợp sau :

    a) \(A=\left\{a\right\}\)

    b) \(B=\left\{a,b\right\}\)

    c) \(\varnothing\)

    2. Tập hợp A có bao nhiêu tập hợp con, nếu 

    a) A có 1 phần tử ?

    b) A có 2 phần tử ?

    c) A có 3 phần tử ?

    Theo dõi (0) 1 Trả lời

-- Mod Toán Học 10 HỌC247

Quảng cáo

Được đề xuất cho bạn