Đại số 9 Bài 5: Công thức nghiệm thu gọn

5 trắc nghiệm 8 bài tập SGK

Như bài học trước, các bạn đã được học công thức tính nghiệm của phương trình bậc hai, vậy liệu khi chính ta sử dụng biệt thức delta ở các bài toán có hệ số a, b, c cao thì sẽ như thế nào, liệu có cách nào để con số đó nhỏ hơn và dễ nhìn hơn?

Tóm tắt lý thuyết

1. Công thức nghiệm thu gọn

Đối với phương trình bậc hai \(ax^2+bx+c=0(a\neq 0)\), trong nhiều trường hợp nếu đặt \(b=2b' (b\vdots 2)\) thì liệu việc tính toán có đơn giản hơn?

\(b=2b' \Rightarrow \Delta =(2b')^2-4ac=4b'^2-4ac=4(b'^2-ac)\)

Ta có: \(\Delta '=b'^2-ac\)

Từ đó, ta đi đến các kết luận sau đây:

Với các phương trình bậc hai \(ax^2+bx+c=0(a\neq 0)\) và \(b=2b'\), \(\Delta '=b'^2-ac\) thì:

Nếu \(\Delta '>0\) thì phương trình có hai nghiệm phân biệt

\(x_{1}=\frac{-b'+\sqrt{\Delta '}}{a}; x_{2}=\frac{-b'-\sqrt{\Delta '}}{a}\)

Nếu \(\Delta '=0\) thì phương trình có nghiệm kép \(x=\frac{-b'}{a}\)

Nếu \(\Delta '<0\) thì phương trình vô nghiệm.

2. Áp dụng

Chúng ta sẽ cùng đi vài ví dụ sau:

Ví dụ 1:

Giải phương trình bằng công thức nghiệm thu gọn: \(3x^2+10x+5=0\)

Giải: \(\Delta '=5^2-5.3=10>0\Rightarrow \sqrt{\Delta '}=\sqrt{10}\)

Vậy \(x_{1}=\frac{-5+\sqrt{10}}{3}; x_{2}=\frac{-5-\sqrt{10}}{3}\)

Ví dụ 2: 

Giải phương trình bằng công thức nghiệm thu gọn: \(5x^2-6\sqrt{2}x+1=0\)

Giải: \(\Delta '=(3\sqrt{2})^2-5.1=13>0\Rightarrow \sqrt{\Delta '}=13\)

Vậy \(x_{1}=\frac{3\sqrt{2}+\sqrt{13}}{5}; x_{2}=\frac{3\sqrt{2}-\sqrt{13}}{5}\)

Bài tập minh họa

1. Bài tập cơ bản

Bài 1: Giải phương trình bằng công thức rút gọn sau:

\(x^2+6x-11=0\) ; \(x^2-4\sqrt{2}x-7=0\)

Hướng dẫn: \(x^2+6x-11=0\)

\(\Delta '=3^2-1.(-11)=20>0\Rightarrow \sqrt{\Delta '}=2\sqrt{5}\)

\(x_{1}=-3+2\sqrt{5}; x_{2}=-3-2\sqrt{5}\)

Tương tự đối với phương trình: \(x^2-4\sqrt{2}x-7=0\)

\(\Delta '=(-2\sqrt{2})^2-1.(-7)=15>0\Rightarrow \sqrt{\Delta '}=\sqrt{15}\)

\(x_{1}=2\sqrt{2}+\sqrt{15}; x_{2}=2\sqrt{2}-\sqrt{15}\)

Bài 2: Giải phương trình bằng công thức thu gọn sau:

\(3x^2+18x+29=0\) ; \(x^2-16x+64=0\)

Hướng dẫn: \(3x^2+18x+29=0\)

\(\Delta '=9^2-29.3=81-87=-6<0\) 

Vậy phương trình trên vô nghiệm.

\(x^2-16x+64=0\)

\(\Delta '=(-8)^2-64.1=0\)

Vậy phương trình có nghiệm kép \(x=-\frac{-8}{1}=8\)

Bài 3: Không giải phương trình, hãy xác định xem phương trình có bao nhiêu nghiệm?

\(x^2+6x-11=0\) ; \(x^2+7x+18=0\)

Hướng dẫn: \(x^2+6x-11=0\)

Ta nhận thấy rằng hệ số a và c trái dấu nhau nên "theo bài trước", ta có phương trình trên luôn có 2 nghiệm phân biệt.

\(x^2+7x+18=0\)

\(\Delta =7^2-4.18.1=49-72=-23<0\)

Vậy phương trình trên vô nghiệm.

2. Bài tập nâng cao

Bài 1: Tìm giá trị của tham số m để phương trình \(x^2+2mx-m+4=0\) có nghiệm.

Hướng dẫn: Ta tính biệt thức \(\Delta '\) của phương trình trên:

\(\Delta '=m^2-m+4\)

Để phương trình trên có nghiệm thì \(\Delta '\geq 0\Leftrightarrow m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}+3,75> 0\forall m\epsilon \mathbb{R}\)

Vậy, phương trình trên luôn có 2 nghiệm phân biệt.

Bài 2: Tìm giá trị của tham số m để phương trình \(x^{2}-mx+m-1=0\) có đúng 1 nghiệm duy nhất

Hướng dẫn: Ta tính biệt thức \(\Delta\) của phương trình trên:

\(\Delta =(-m)^2-4m+4=m^2-4m+4=(m-2)^2\)

Để phương trình có nghiệm duy nhất \(\Leftrightarrow \Delta =0\Leftrightarrow m=2\)

Vậy với \(m=2\) thì phương trình trên có nghiệm duy nhất.

Lời kết

Để cũng cố bài học, xin mời các em cũng làm bài kiểm tra Trắc nghiệm Đại số 9 Bài 5 với những câu hỏi củng cố bám sát nội dung bài học. Bên cạnh đó các em có thể nêu thắc mắc của mình thông qua phần Hỏi đáp Đại số 9 Bài 5 cộng đồng Toán HỌC247 sẽ sớm giải đáp cho các em.

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Đại số 9 Bài 5 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 9

-- Mod Toán Học 9 HỌC247