Giải bài 28 tr 55 sách BT Toán lớp 9 Tập 2
Với những giá trị nào của x thì giá trị của hai biểu thức bằng nhau:
a) \({x^2} + 2 + 2\sqrt 2 \) và \(2\left( {1 + \sqrt 2 } \right)x\)
b) \(\sqrt 3 {x^2} + 2x - 1\) và \(2\sqrt 3 x + 3\)
c) \( - 2\sqrt 2 x - 1\) và \(\sqrt 2 {x^2} + 2x + 3\)
d) \({x^2} - 2\sqrt 3 x - \sqrt 3 \) và \(2{x^2} + 2x + \sqrt 3 \)
e) \(\sqrt 3 {x^2} + 2\sqrt 5 x - 3\sqrt 3 \) và \( - {x^2} - 2\sqrt 3 x + 2\sqrt 5 + 1\)?
Hướng dẫn giải chi tiết
Hướng dẫn giải
Phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) và \(b = 2b'\), \(\Delta ' = b{'^2} - ac\)
+ Nếu \(\Delta ' >0\) thì phương trình có hai nghiệm phân biệt:
\({x_1}=\dfrac{-b' + \sqrt{\bigtriangleup '}}{a}\); \({x_2}=\dfrac{-b' - \sqrt{\bigtriangleup '}}{a}\)
+ Nếu \(\Delta ' =0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b'}{a}\).
+ Nếu \(\Delta ' <0\) thì phương trình vô nghiệm.
Lời giải chi tiết
a)
\(\eqalign{
& {x^2} + 2 + 2\sqrt 2 = 2\left( {1 + \sqrt 2 } \right)x \cr
& \Leftrightarrow {x^2} - 2\left( {1 + \sqrt 2 } \right)x + 2 + 2\sqrt 2 = 0 \cr
& \Delta ' = {\left[ { - \left( {1 + \sqrt 2 } \right)} \right]^2} - 1.\left( {2 + 2\sqrt 2 } \right) \cr
& = 1 + 2\sqrt 2 + 2 - 2 - 2\sqrt 2 = 1 > 0 \cr
& \sqrt {\Delta '} = \sqrt 1 = 1 \cr
& {x_1} = {{1 + \sqrt 2 + 1} \over 1} = 2 + \sqrt 2 \cr
& {x_2} = {{1 + \sqrt 2 - 1} \over 1} = \sqrt 2 \cr} \)
Vậy với \(x = 2 + \sqrt 2 \) hoặc \(x = \sqrt 2 \) thì hai biểu thức bằng nhau.
b)
\(\eqalign{
& \sqrt 3 {x^2} + 2x - 1 = 2\sqrt 3 x + 3 \cr
& \Leftrightarrow \sqrt 3 {x^2} + \left( {2 - 2\sqrt 3 } \right)x - 4 = 0 \cr
& \Leftrightarrow \sqrt 3 {x^2} + 2\left( {1 - \sqrt 3 } \right)x - 4 = 0 \cr
& \Delta ' = {\left( {1 - \sqrt 3 } \right)^2} - \sqrt 3 \left( { - 4} \right) \cr
& = 1 - 2\sqrt 3 + 3 + 4\sqrt 3 \cr
& = 1 + 2\sqrt 3 + 3 = {\left( {1 + \sqrt 3 } \right)^2} > 0 \cr
& \sqrt {\Delta '} = \sqrt {{{\left( {1 + \sqrt 3 } \right)}^2}} = 1 + \sqrt 3 \cr
& {x_1} = {{\sqrt 3 - 1 + 1 + \sqrt 3 } \over {\sqrt 3 }} = {{2\sqrt 3 } \over {\sqrt 3 }} = 2 \cr
& {x_2} = {{\sqrt 3 - 1 - 1 - \sqrt 3 } \over {\sqrt 3 }} = {{ - 2} \over {\sqrt 3 }} = {{ - 2\sqrt 3 } \over 3} \cr} \)
Vậy với x = 2 hoặc \(x = {{ - 2\sqrt 3 } \over 3}\) thì hai biểu thức đó bằng nhau.
c)
\(\eqalign{
& - 2\sqrt 2 x - 1 = \sqrt 2 {x^2} + 2x + 3 \cr
& \Leftrightarrow \sqrt 2 {x^2} + \left( {2 + 2\sqrt 2 } \right)x + 4 = 0 \cr
& \Leftrightarrow \sqrt 2 {x^2} + 2\left( {1 + \sqrt 2 } \right)x + 4 = 0 \cr
& \Delta ' = {\left( {1 + \sqrt 2 } \right)^2} - \sqrt 2 .4 \cr
& = 1 + 2\sqrt 2 + 2 - 4\sqrt 2 \cr
& = 1 - 2\sqrt 2 + 2 = {\left( {\sqrt 2 - 1} \right)^2} > 0 \cr
& \sqrt {\Delta '} = \sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} = \sqrt 2 - 1 \cr
& {x_1} = {{ - 1 - \sqrt 2 + \sqrt 2 - 1} \over {\sqrt 2 }} = {{ - 2} \over {\sqrt 2 }} = - \sqrt 2 \cr
& {x_2} = {{ - 1 - \sqrt 2 - \sqrt 2 + 1} \over {\sqrt 2 }} = {{ - 2\sqrt 2 } \over {\sqrt 2 }} = - 2 \cr} \)
Vậy với \(x = - \sqrt 2 \) hoặc \(x = - 2\) thì hai biểu thức bằng nhau.
d)
\(\eqalign{
& {x^2} - 2\sqrt 3 x - \sqrt 3 = 2{x^2} + 2x + \sqrt 3 \cr
& \Leftrightarrow {x^2} + \left( {2 + 2\sqrt 3 } \right)x + 2\sqrt 3 = 0 \cr
& \Leftrightarrow {x^2} + 2\left( {1 + \sqrt 3 } \right)x + 2\sqrt 3 = 0 \cr
& \Delta ' = {\left( {1 + \sqrt 3 } \right)^2} - 1.2\sqrt 3 \cr
& = 1 + 2\sqrt 3 + 3 - 2\sqrt 3 = 4 > 0 \cr
& \sqrt {\Delta '} = \sqrt 4 = 2 \cr
& {x_1} = {{ - 1 - \sqrt 3 + 2} \over 1} = 1 - \sqrt 3 \cr
& {x_2} = {{ - 1 - \sqrt 3 - 2} \over 1} = - 3 - \sqrt 3 \cr} \)
Vậy với \(x = 1 - \sqrt 3 \) hoặc \(x = - 3 - \sqrt 3 \) thì hai biểu thức bằng nhau.
e)
\(\eqalign{
& \sqrt 3 {x^2} + 2\sqrt 5 x - 3\sqrt 3 = - {x^2} - 2\sqrt 3 x + 2\sqrt 5 + 1 \cr
& \Leftrightarrow \left( {\sqrt 3 + 1} \right){x^2} + \left( {2\sqrt 5 + 2\sqrt 3 } \right)x - 3\sqrt 3 - 2\sqrt 5 - 1 = 0 \cr
& \Leftrightarrow \left( {\sqrt 3 + 1} \right){x^2} + 2\left( {\sqrt 5 + \sqrt 3 } \right)x - 3\sqrt 3 - 2\sqrt 5 - 1 = 0 \cr
& \Delta ' = {\left( {\sqrt 5 + \sqrt 3 } \right)^2} - \left( {\sqrt 3 + 1} \right)\left( { - 3\sqrt 3 - 2\sqrt 5 - 1} \right) \cr
& = 5 + 2\sqrt {15} + 3 + 9 + 2\sqrt {15} + \sqrt 3 + 3\sqrt 3 + 2\sqrt 5 + 1 \cr
& = 18 + 4\sqrt 3 + 2\sqrt 5 + 4\sqrt {15} \cr
& = 1 + 12 + 5 + 2.2\sqrt 3 + 2\sqrt 5 + 2.2\sqrt 3 .\sqrt 5 \cr
& = 1 + {\left( {2\sqrt 3 } \right)^2} + {\left( {\sqrt 5 } \right)^2} + 2.1.2\sqrt 3 + 2.1.\sqrt 5 + 2.2\sqrt 3 .\sqrt 5 \cr
& = {\left( {1 + 2\sqrt 3 + \sqrt 5 } \right)^2} > 0 \cr
& \sqrt {\Delta '} = \sqrt {{{\left( {1 + 2\sqrt 3 + \sqrt 5 } \right)}^2}} = 1 + 2\sqrt 3 + \sqrt 5 \cr
& {x_1} = {{ - \left( {\sqrt 5 + \sqrt 3 } \right) + 1 + 2\sqrt 3 + \sqrt 5 } \over {\sqrt 3 + 1}} = {{1 + \sqrt 3 } \over {\sqrt 3 + 1}} = 1 \cr
& {x_2} = {{ - \left( {\sqrt 5 + \sqrt 3 } \right) - 1 - 2\sqrt 3 - \sqrt 5 } \over {\sqrt 3 + 1}} = {{ - 1 - 3\sqrt 3 - 2\sqrt 5 } \over {\sqrt 3 + 1}} \cr
& = 4 - \sqrt 3 - \sqrt 5 - \sqrt {15} \cr} \)
-- Mod Toán 9 HỌC247
-
Tìm tọa độ giao điểm của parabol (P) : \(y = - {x^2}\) và đường thẳng (d): \(y = 2x – 3.\)
bởi Lan Anh 17/02/2021
Theo dõi (0) 1 Trả lời -
Tìm m để phương trình \({x^2} - 2\left( {m - 1} \right)x + m + 5 = 0\) có nghiệm kép.
bởi het roi 17/02/2021
Theo dõi (0) 1 Trả lời -
Tìm tọa độ giao điểm của parabol (P) : \(y = {x^2}\) và đường thẳng (d) : \(y = 2x + 3.\)
bởi Bảo Anh 17/02/2021
Theo dõi (0) 1 Trả lời -
Tìm m để phương trình có hai nghiệm phân biệt : \({x^2} + 2mx + 4 = 0.\)
bởi Nguyễn Trọng Nhân 17/02/2021
Theo dõi (0) 1 Trả lời -
Giải phương trình: \({x^2} - 2\sqrt 3 x - 6 = 0.\)
bởi Nguyen Ngoc 18/02/2021
Theo dõi (0) 1 Trả lời -
Giải phương trình: \(5{x^2} + 2x - 16 = 0\)
bởi Nhật Nam 17/02/2021
Theo dõi (0) 1 Trả lời -
Cho phương trình (ẩn \(x\)) \({x^2}-{\rm{ }}2\left( {m{\rm{ }}-{\rm{ }}1} \right)x{\rm{ }} + {\rm{ }}{m^2} = {\rm{ }}0\). Với giá trị nào của \(m\) thì phương trình có hai nghiệm phân biệt ? Có nghiệm kép ? Vô nghiệm ?
bởi Sam sung 18/02/2021
Theo dõi (0) 1 Trả lời -
Cho phương trình (ẩn \(x\)) \({x^2}-{\rm{ }}2\left( {m{\rm{ }}-{\rm{ }}1} \right)x{\rm{ }} + {\rm{ }}{m^2} = {\rm{ }}0\). Tính \(\Delta '\).
bởi Nguyễn Hạ Lan 17/02/2021
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 24 trang 50 SGK Toán 9 Tập 2
Bài tập 27 trang 55 SBT Toán 9 Tập 2
Bài tập 29 trang 55 SBT Toán 9 Tập 2
Bài tập 30 trang 56 SBT Toán 9 Tập 2
Bài tập 31 trang 56 SBT Toán 9 Tập 2
Bài tập 32 trang 56 SBT Toán 9 Tập 2
Bài tập 33 trang 56 SBT Toán 9 Tập 2
Bài tập 34 trang 56 SBT Toán 9 Tập 2
Bài tập 5.1 trang 56 SBT Toán 9 Tập 2