YOMEDIA
ZUNIA12

Bài tập 31 trang 56 SBT Toán 9 Tập 2

Giải bài 31 tr 56 sách BT Toán lớp 9 Tập 2

Với giá trị nào của x thì giá trị của hai hàm số bằng nhau:

a) \(y = {1 \over 3}{x^2}\) và \(y = 2x - 3\)

b) \(y =  - {1 \over 2}{x^2}\) và \(y = x - 8\)?

ADSENSE

Hướng dẫn giải chi tiết

Hướng dẫn giải

Phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) và \(b = 2b'\), \(\Delta ' = b{'^2} - ac\)

+ Nếu \(\Delta ' >0\) thì phương trình có hai nghiệm phân biệt:

\({x_1}=\dfrac{-b' + \sqrt{\bigtriangleup '}}{a}\); \({x_2}=\dfrac{-b' - \sqrt{\bigtriangleup '}}{a}\)

+ Nếu \(\Delta ' =0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b'}{a}\).

+ Nếu \(\Delta ' <0\) thì phương trình vô nghiệm.

Lời giải chi tiết

a) \({1 \over 3}{x^2} = 2x - 3 \Leftrightarrow {x^2} - 6x + 9 = 0\)

\(\Delta ' = {\left( { - 3} \right)^2} - 1.9 = 9 - 9 = 0\)

Phương trình có nghiệm số kép: \({x_1} = {x_2} = 3\)

Vậy với x = 3 thì hàm số \(y = {1 \over 3}{x^2}\) và hàm số y = 2x – 3 có giá trị bằng nhau.

b) \( - {1 \over 2}{x^2} = x - 8 \Leftrightarrow {x^2} + 2x - 16 = 0\)

\(\eqalign{
& \Delta ' = {1^2} - 1.\left( { - 16} \right) = 1 + 16 = 17 > 0 \cr 
& \sqrt {\Delta '} = \sqrt {17} \cr 
& {x_1} = {{ - 1 + \sqrt {17} } \over 1} = - 1 + \sqrt {17} \cr 
& {x_2} = {{ - 1 - \sqrt {17} } \over 1} = - 1 - \sqrt {17} \cr} \)

Vậy với \(x = \sqrt {17}  - 1\) hoặc \(x =  - \left( {1 + \sqrt {17} } \right)\) thì giá trị của hai hàm số \(y =  - {1 \over 2}{x^2}\) và y = x – 8 bằng nhau.

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 31 trang 56 SBT Toán 9 Tập 2 HAY thì click chia sẻ 
ZUNIA9
 

 

YOMEDIA
AANETWORK
OFF