YOMEDIA
NONE

Bài tập 44 trang 14 SBT Toán 9 Tập 2

Giải bài 44 tr 14 sách BT Toán lớp 9 Tập 2

Hai người thợ cùng xây một bức tường trong \(7\) giờ \(12\) phút thì xong (vôi vữa và gạch có công nhân khác vận chuyển). Nếu người thứ nhất làm trong \(5\) giờ và người thứ hai làm trong \(6\) giờ thì cả hai xây được \(\displaystyle{3 \over 4}\) bức tường. Hỏi mỗi người làm một mình thì bao lâu xây xong bức tường?

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng:

- Xem toàn bộ công việc là \(1\) (công việc)

- Thực hiện một công việc trong \(a\) (giờ) \((a>0)\) thì xong việc.

Suy ra trong một giờ thực hiện được \(\dfrac {1}{a}\) công việc

- Cách giải bài toán bằng cách lập hệ phương trình:

Bước \(1\): Lập hệ phương trình

+ Chọn hai ẩn và đặt điều kiện thích hợp cho chúng 

+ Biểu diễn các đại lượng chưa biết theo các ẩn và các đại lượng đã biết

+ Lập hai phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước \(2\): Giải hệ phương trình nói trên (sử dụng phương pháp đặt ẩn số phụ)

Bước \(3\): Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thích hợp với bài toán và kết luận.

Lời giải chi tiết

Đổi \(7\) giờ \(12\) phút \(=\dfrac {36}{5}\) giờ

Gọi thời gian người thứ nhất xây một mình xong bức tường là \(x\) ( giờ), thời gian người thứ hai xây một mình xong bức tường là \(y\) (giờ)

Điều kiện: \(x >\displaystyle {36 \over 5};y > {36 \over 5}\)

Trong \(1\) giờ người thứ nhất xây được \(\displaystyle{1 \over x}\) (bức tường)

Trong \(1\) giờ người thứ hai xây được \(\displaystyle{1 \over y}\) (bức tường)

Vì hai người thợ cùng xây một bức tường trong \(7\) giờ \(12\) phút  hay \(\dfrac {36}{5}\) giờ thì xong nên trong \(1\) giờ cả hai người xây được \(\displaystyle 1:{{36} \over 5} = {5 \over {36}}\) (bức tường).

Do đó ta có phương trình: \(\displaystyle{1 \over x} + {1 \over y} = {5 \over {36}}\)

Nếu người thứ nhất làm trong \(5\) giờ và người thứ hai làm trong \(6\) giờ thì cả hai xây được \(\displaystyle{3 \over 4}\) bức tường, khi đó ta có:

\(\displaystyle{5 \over x} + {6 \over y} = {3 \over 4}\)

Ta có hệ phương trình:

\(\left\{ {\matrix{\displaystyle
{{1 \over x} + {1 \over y} = {5 \over {36}}} \cr 
\displaystyle{{5 \over x} + {6 \over y} = {3 \over 4}} \cr} } \right.\)

Đặt \(\displaystyle{1 \over x} = a;{1 \over y} = b (a>0;b>0)\) ta có:

\(\eqalign{
& \left\{ {\matrix{
{a + b = \displaystyle{5 \over {36}}} \cr 
{5a + 6b =\displaystyle {3 \over 4}} \cr
} } \right.\cr& \Leftrightarrow \left\{ {\matrix{
{5a + 5b = \displaystyle{{25} \over {36}}} \cr 
{5a + 6b = \displaystyle{3 \over 4}} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = \displaystyle{1 \over {18}}} \cr 
{a + b = \displaystyle{5 \over {36}}} \cr
} } \right.\cr& \Leftrightarrow \left\{ {\matrix{
{b = \displaystyle{1 \over {18}}} \cr 
{a = \displaystyle{1 \over {12}}} \cr} } \right. \text{(thỏa mãn)} \cr} \)

 

Suy ra:

\(\left\{ {\matrix{\displaystyle
{{1 \over x} = {1 \over {12}}} \cr 
\displaystyle{{1 \over y} = {1 \over {18}}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 12} \cr 
{y = 18} \cr} } \right.\text{(thỏa mãn)} \)

Vậy người thứ nhất làm một mình trong \(12\) giờ thì xây xong bức tường, người thứ hai làm một mình trong \(18\) giờ thì xây xong bức tường.

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 44 trang 14 SBT Toán 9 Tập 2 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON