Sau đây mời các em học sinh lớp 10 cùng tham khảo Bài ôn tập cuối chương 9. Bài giảng đã được soạn khái quát lý thuyết cần nhớ, đồng thời có các bài tập minh họa có lời giải chi tiết giúp các em dễ dàng nắm được kiến thức trọng tâm của bài.
Tóm tắt lý thuyết
1.1. Tọa độ của vectơ
a) Toạ độ của vectơ đối với một hệ trục toạ độ
Mặt phẳng mà trên đó đã cho một hệ trục toạ độ Oxy được gọi là mặt phẳng toa độ Oxy, hay gọi tắt là mặt phẳng Oxy.
*Toạ độ của một vectơ
Trong mặt phẳng Oxy, cặp số (x; y) trong biêu diễn \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j \) được gọi là toạ độ của vectơ \(\overrightarrow a \). kí hiệu \(\overrightarrow a \) = (x, y), x gọi là hoành độ, y gọi là tung độ của vectơ \(\overrightarrow a \). |
---|
Chú ý:
+ \(\overrightarrow a = \left( {x,y} \right) \Leftrightarrow \overrightarrow a = x\overrightarrow i + y\overrightarrow j \)
+ Nếu cho \(\overrightarrow a = \left( {x,y} \right)\) và \(\overrightarrow b = \left( {x',y'} \right)\) thì \(\overrightarrow a = \overrightarrow b \Leftrightarrow \left\{ \begin{array}{l}
x = x'\\
y = y'
\end{array} \right.\)
*Toạ độ của một điểm
Trong mặt phẳng toa độ, cho một điểm M tuỳ ý. Toạ độ của vectơ \(\overrightarrow {OM} \) được gọi là toạ độ của điểm M. |
---|
Nhận xét:
+ Nếu \(\overrightarrow {OM} = \left( {x;y} \right)\) thì cặp số (x; y) là toa độ của điểm M, kí hiệu M(x; y), x gọi là hoành độ, y gọi là tung độ của điểm M
+ \(M\left( {x;y} \right) \Leftrightarrow \overrightarrow {OM} = x\overrightarrow i + y\overrightarrow j \)
Chú ý: Hoành độ của điểm M còn được kí hiệu là xM, tung độ của điểm M còn được kí hiệu là yM. Khi đó ta việt M(xM; yM).
b) Biểu thức toạ độ của các phép toán vectơ
Cho hai vectơ \(\overrightarrow a = \left( {{a_1};{a_2}} \right),\overrightarrow b = \left( {{b_1};{b_2}} \right)\) và số thưucj k. Khi đó: \(\begin{array}{l} |
---|
c) Áp dụng của toạ độ vectơ
* Liên hệ giữa toạ độ của điểm và toạ độ của vectơ trong mặt phẳng
Cho hai điểm \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\). Ta có:
\(\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A}} \right)\)
* Toạ độ trung điểm của đoạn thẳng và trọng tâm của tam giác
Cho hai điểm \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\). Toa độ trung điểm \(M\left( {{x_M};{y_M}} \right)\) của đoạn thẳng AB là
\({x_M} = \frac{{{x_A} + {x_B}}}{2};{y_M} = \frac{{{y_A} + {y_B}}}{2}\)
Cho tam giác ABC có \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right),C\left( {{x_C};{y_C}} \right)\). Toa độ trọng tâm \(G\left( {{x_G};{y_G}} \right)\) của tam giác ABC là:
\({x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3};{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\)
1.2. Đường thẳng trong mặt phẳng tọa độ
a) Phương trình đường thẳng
*Phương trình tham số của đường thẳng
Cho đường thẳng \(\Delta \) đi qua điểm \(A\left( {{x_0};{y_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u \left( {a;b} \right)\). Khi đó điểm M(x: y) thuộc đường thẳng \(\Delta \) khi và chỉ khi tổn tại số thực t sao cho \(\overrightarrow {AM} = t\overrightarrow u \), hay
\(\left\{ \begin{array}{l}
x = {x_0} + at\\
y = {y_0} + bt
\end{array} \right.\;\;\;\;\;\;\;\;(2)\)
Hệ (2) được gọi là phương trình tham số của đường thẳng \(\Delta \) (t là tham số).
*Phương trình tổng quát của đường thẳng
Trong mặt phẳng toạ độ, mọi đường thẳng đều có phương trình tổng quát dạng ax + by + c =0, với a và b không đồng thời bằng 0. Ngược lại, mỗi phương trình dạng ax + by + c =0, với a và b không đồng thời bằng 0, đều là phương trình của một đường thẳng, nhận \(\overrightarrow n \left( {a;b} \right)\) là một vectơ pháp tuyến.
Nhận xét: Trong mặt phẳng toạ độ, cho đường thẳng \(\Delta \): ax + by + c = 0
+ Nếu b = 0 thì phương trình \(\Delta \) có thể đưa về dạng x = m (với \(m = - \frac{c}{a}\)) và \(\Delta \) vuông góc với Ox.
+ Nếu \(b \ne 0\) thì phương trình \(\Delta \) có thể đưa về dạng y = nx + p (với \(n = - \frac{a}{b},p = - \frac{c}{b}\))
* Liên hệ giữa đồ thị hàm số bậc nhất và đường thẳng
+ Nếu a=0 và b \( \ne \) 0 thì phương trình tổng quát ax + by + c =0 trở thành y
Khi đó d là đường thẳng vuông góc với Oy tại điểm \(y = - \frac{c}{b}\) (Hình sau).
+ Nếu b =0 và a \( \ne \) 0 thì phương trình tổng quát ax + by + c =0 trở thành \(x = - \frac{c}{a}\)
Khí đó d là đường thẳng vuông góc với Ox tại điểm \(\left( { - \frac{c}{a};0} \right)\) (Hình sau)
Trong cả hai trường hợp này, đường thẳng d không phâi là đồ thị của hàm số bậc nhất.
b) Vị trí tương đối của hai đường thẳng
Cho \({\Delta _1}:{a_1}x + {b_1}y + {c_1} = 0\) và \({\Delta _2}:{a_2}x + {b_2}y + {c_2} = 0\).
Toạ độ giao điểm của \({\Delta _1}\) và \({\Delta _2}\) là nghiệm của hệ phương trình:
\(\left\{ \begin{array}{l}
{a_1}x + {b_1}y + {c_1} = 0\\
{a_2}x + {b_2}y + {c_2} = 0
\end{array} \right.(*)\)
\({\Delta _1}\) cắt \({\Delta _2}\) tại \(M\left( {{x_0};{y_0}} \right)\) ⇔ hệ (*) có nghiệm duy nhất \(\left( {{x_0};{y_0}} \right)\). \({\Delta _1}\) song song với \({\Delta _2}\) ⇔ hệ (*) vô nghiệm. \({\Delta _1}\) trùng \({\Delta _2}\) ⇔ hệ (*) có vô số nghiệm. |
---|
Chú ý
Dựa vào các vectơ chỉ phương \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) hoặc các vectơ pháp tuyến \(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) của \(\overrightarrow {{\Delta _1}} ,\overrightarrow {{\Delta _2}} \) ta có:
+ \({{\Delta _1}}\) Và \({{\Delta _2}}\) song song hoặc trùng nhau ⇔ \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) cùng phương ⇔ \(\overrightarrow {{n_1}} \) và \(\overrightarrow {{n_2}} \) cùng phương.
+ \({{\Delta _1}}\) và \({{\Delta _2}}\) cắt nhau ⇔ \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) không cùng phương ⇔ \(\overrightarrow {{n_1}} \) và \(\overrightarrow {{n_2}} \) không cùng phương.
c) Góc giữa hai đường thẳng
- Hai đường thẳng cắt nhau tạo thành bốn góc, số đo của góc không tù được gọi là số đo góc (hay đơn giản là góc) giữa hai đường thẳng.
- Góc giữa hai đường thẳng song song hoặc trùng nhau được quy ước bằng 0°.
- Cho hai đường thẳng
\({\Delta _1}:{a_1}x + {b_1}y + {c_1} = 0\) và \({\Delta _2}:{a_2}x + {b_2}y + {c_2} = 0\).
Với các vectơ pháp tuyến \(\overrightarrow {{n_1}} \left( {{a_1};{b_1}} \right)\) và \(\overrightarrow {{n_2}} \left( {{a_2};{b_2}} \right)\) trong ứng. Khi đó, góc \(\varphi \) giữa hai đường thằng đó được xác định thông qua công thức
\(cos\varphi = \left| {cos\left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {{a_1}^2 + {b_1}^2} .\sqrt {{a_2}^2 + {b_2}^2} }}\)
d) Khoảng cách từ một điểm đến một đường thẳng
Cho điểm \(M\left( {{x_0};{y_0}} \right)\) và đường thẳng \(\Delta :ax + by + c = 0\). Khoảng cách từ điểm M đến đường thẳng \(\Delta \), kí hiệu là \(d\left( {M,\Delta } \right)\), được tính bởi công thức
\(d\left( {M,\Delta } \right) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
1.3. Đường tròn trong mặt phẳng tọa độ
a) Phương trình đường tròn
Điểm \(M\left( {x;y} \right)\) thuộc đường tròn (C), tâm ((a; b), bán kính R khi và chỉ khi \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\). (1) Ta gọi (1) là phương trình của đường tròn (C). |
---|
Nhận xét: Phương trình (1) tương đương với \({x^2} + {y^2} - 2{\rm{a}}x - 2by + \left( {{{\rm{a}}^2} + {b^2} - {R^2}} \right) = 0\).
Phương trình \({x^2} + {y^2} - 2{\rm{a}}x - 2by + c = 0\) là phương trình của một đường tròn (C) khi và chỉ khi \({a^2} + {b^2} - c > 0\). Khi đó, (C) có tâm I(a; b) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} \)
b) Phương trình tiếp tuyến của đường tròn
Phương trình tiếp tuyến của đường tròn tâm I(a, b) tại điểm \({M_0}\left( {{x_0};{y_0}} \right)\) nằm trên đường tròn là: \(\left( {a - {x_0}} \right)\left( {x - {x_0}} \right) + \left( {b - {y_0}} \right)\left( {y - {y_0}} \right) = 0\) |
---|
1.4. Ba đường conic trong mặt phẳng tọa độ
a) Elip
Cho hai điểm cố định và phân biệt \({F_1},{F_2}\). Đặt \({F_1}{F_2} = 2c > 0\). Cho số thực a lớn hơn c. Tập hợp các điểm M sao cho \(M{F_1} + M{F_2} = 2a\) được gợi là đường elip (hay elip). Hai điểm \({F_1},{F_2}\) được gọi là hai tiêu điểm và \({F_1}{F_2} = 2c\) được gợi là tiêu cự của elip đó.
Trong mặt phẳng toạ độ Oxy, elip có hai tiêu điểm thuộc trục hoành sao cho O là trung điềm của đoạn nối hai tiêu điểm đó, thì có phương trình
\(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\). (2)
Ngược lại, mỗi phương trình có dạng (2), với a > b > 0, đều là phương trình của elip có hai tiêu điểm \({F_1}\left( { - \sqrt {{a^2} - {b^2}} ;0} \right),{F_2}\left( {\sqrt {{a^2} - {b^2}} ;0} \right)\), tiêu cự \(2c = 2\sqrt {{a^2} - {b^2}} \) và tổng các khoảng cách từ mỗi điểm thuộc elip đó tới hai tiêu điểm bằng 2a.
Phương trinh (2) được gọi là phương trình chính tắc của elip tương ứng.
b) Hypebol
Cho hai điểm phân biệt có định \({F_1}\) và \({F_2}\). Đặt \({F_1}{F_2} = 2c\). Cho số thực dương a nhỏ hơn c. Tập hợp các điểm M sao cho \(\left| {M{F_1} - M{F_2}} \right| = 2c\) được gọi là đường hypebol (hay hypebol). Hai điểm \({{F_1},{F_2}}\) được gọi là hai tiêu điểm và \({F_1}{F_2} = 2c\) được gọi là tiêu cự của hypebol đó.
Trong mặt phẳng toạ độ Oxy, hypebol có hai tiêu điểm thuộc trục hoành sao cho O là trung điểm của đoạn nối hai tiêu điểm đó, thì có phương trình
\(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a,b > 0\). (4)
Ngược lại, mỗi phương trình có dạng (4), với a, b >0, đều là phương trình của hypebol có hai tiêu điểm \({F_1}\left( { - \sqrt {{a^2} + {b^2}} ;0} \right),{F_2}\left( {\sqrt {{a^2} + {b^2}} ;0} \right)\), tiêu cự \(2c = 2\sqrt {{a^2} + {b^2}} \) và giá trị tuyệt đối của hiệu các khoảng cách từ mối điểm thuộc hypebol đến hai tiêu điểm bằng 2a.
Phương trình (4) được gọi là phương trình chính tắc của hypebol tương ứng.
c) Parabol
Cho một điểm F có định và một đường thẳng \(\Delta \) cố định không đi qua F. Tập hợp các điểm M cách đều F và \(\Delta \) được gọi là đường parabol (hay parabol). Điểm F được gọi là tiêu điểm, \(\Delta \) được gọi là đường chuẩn, khoảng cách từ F đến \(\Delta \) được gọi là tham số tiêu của parabol đó.
Xét (P) là một parabol với tiêu điểm F, đường chuẩn \(\Delta \). Gọi H là hình chiếu vuông góc của F trên \(\Delta \). Khi đó, trong hệ trục toạ độ Oxy với gốc O là trung điểm của HF, tia Ox trùng tia OF, parabol (P) có phương trình
\({y^2} = 2p{\rm{x}}\) (với p > 0) (5)
Phương trình (5) được gọi là phương trình chính tắc của parabol (P).
Ngược lại, mỗi phương trình dạng (5), với p > 0, là phương trình chính tắc của parabol có tiêu điểm \(F\left( {\frac{p}{2};0} \right)\) và đường chuẩn \(\Delta :x = - \frac{p}{2}\).
Bài tập minh họa
Câu 1: Cho hai vectơ \(\overrightarrow m = \left( { - 6;1} \right),\overrightarrow n = \left( {0;2} \right)\)
a) Tìm tọa độ các vectơ \(\overrightarrow m + \overrightarrow n ,\overrightarrow m - \overrightarrow n ,10\overrightarrow m , - 4\overrightarrow n \)
b) Tính các tích vô hướng \(\overrightarrow m .\overrightarrow n ,\left( {10\overrightarrow m } \right).\left( { - 4\overrightarrow n } \right)\)
Hướng dẫn giải
a) Ta có
\(\begin{array}{l}\overrightarrow m + \overrightarrow n = \left( {\left( { - 6 + 0} \right);1 + 2} \right) = ( - 6;3)\\\overrightarrow m - \overrightarrow n = \left( {\left( { - 6 - 0} \right);\left( {1 - 2} \right)} \right) = \left( { - 6; - 1} \right)\\10\overrightarrow m = (10.( - 6);10.1) = ( - 60;10)\\ - 4\overrightarrow n = (( - 4).0;( - 4).2) = (0; - 8)\end{array}\)
b) Ta có
\(\overrightarrow m .\overrightarrow n = ( - 6).0 + 1.2 = 0 + 2 = 2\)
Ta có \(10\overrightarrow m = ( - 60;10)\) và \( - 4\overrightarrow n = (0; - 8)\) nên \(\left( {10\overrightarrow m } \right).\left( { - 4\overrightarrow n } \right) = ( - 60).0 + 10.( - 8) = 0 - 80 = - 80\)
Câu 2: Xét vị trí tương đối của các cặp đường thẳng \({d_1}\)và \({d_2}\) trong các trường hợp sau:
a) \({d_1}:x - 5y + 9 = 0\) và \({d_2}:10x + 2y + 7 = 10\)
b) \({d_1}:3x - 4y + 9 = 0\) và \({d_2}:\left\{ \begin{array}{l}x = 1 + 4t\\y = 1 + 3t\end{array} \right.\)
c) \({d_1}:\left\{ \begin{array}{l}x = 5 + 4t\\y = 4 + 3t\end{array} \right.\) và \({d_2}:\left\{ \begin{array}{l}x = 1 + 8t\\y = 1 + 6t\end{array} \right.\)
Hướng dẫn giải
a) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {1; - 5} \right),\overrightarrow {{n_2}} = \left( {10;2} \right)\)
Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 1.10 + ( - 5).2 = 0\) nên \(\overrightarrow {{n_1}} \bot \overrightarrow {{n_2}} \)
Giải hệ phương trình \(\left\{ \begin{array}{l}x - 5y + 9 = 0\\10x + 2y + 7 = 10\end{array} \right.\) ta được nghiệm \(\left\{ \begin{array}{l}x = - \frac{3}{{52}}\\y = \frac{{93}}{{52}}\end{array} \right.\)
Suy ra hai đường thẳng \({d_1}\)và \({d_2}\) vuông góc và cắt nhau tại \(M\left( { - \frac{3}{{52}};\frac{{93}}{{52}}} \right)\)
b) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {3; - 4} \right),\overrightarrow {{n_2}} = \left( {3, - 4} \right)\)
\(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) trùng nhau nên hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau
Lấy điểm \(A(1;1)\) thuộc \({d_2}\), thay tọa độ của A vào phương trình \({d_1}\), ta được \(3.1 - 4.1 + 9 = 8 \ne 0\), suy ra A không thuộc đường thẳng \({d_1}\)
Vậy hai đường thẳng \({d_1}\)và \({d_2}\) song song
c) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {3; - 4} \right),\overrightarrow {{n_2}} = \left( {6; - 8} \right)\)
Ta có \({a_1}{b_2} - {a_2}{b_1} = 3.( - 8) - ( - 4).6 = 0\)suy ra hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau
Lấy điểm \(A(1;1)\) thuộc \({d_2}\), thay tọa độ của A vào phương trình \({d_1}\), ta được \(\left\{ \begin{array}{l}1 = 5 + 4t\\1 = 4 + 3t\end{array} \right. \Leftrightarrow t = - 1\), suy ra A thuộc đường thẳng \({d_1}\)
Vậy hai đường thẳng \({d_1}\) và \({d_2}\) trùng nhau
Câu 3: Tìm số đo của góc giữa hai đường thẳng là đồ thị của hai hàm số \(y = x\) và \(y = 2x + 1\)
Hướng dẫn giải
Từ đồ thị hàm số ta có phương trình tổng quát
\(y = x \Leftrightarrow {d_1}:x - y = 0\), \(y = 2x + 1 \Leftrightarrow 2x - y + 1 = 0\)
Từ đó ta có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {1; - 1} \right),\overrightarrow {{n_2}} = \left( {2; - 1} \right)\)
\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {1.2 + ( - 1).( - 1)} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} \sqrt {{2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{3\sqrt {10} }}{{10}} \Rightarrow \left( {{d_1},{d_2}} \right) \approx 18^\circ 26'\)
Vậy góc giữa hai đường thẳng có đồ thị đã cho gần bằng \(18^\circ 26'\)
Câu 4: Viết phương trình tiếp tuyến của đường tròn \((C):{x^2} + {y^2} - 2x - 4y - 20 = 0\) tại điểm \(A(4;6)\)
Hướng dẫn giải
Ta có \({4^2} + {6^2} - 2.4 - 4.6 - 20 = 0\), nên điểm A thuộc (C)
Đường tròn \((C):{x^2} + {y^2} - 2x - 4y - 20 = 0\) có tâm \(I(1;2)\)
Phương trình tiếp tuyến d của (C) tại \(A(4;6)\) là:
\(\begin{array}{l}\left( {4 - 1} \right)\left( {x - 4} \right) + \left( {6 - 2} \right)\left( {y - 6} \right) = 0\\ \Leftrightarrow 3x + 4y + 16 = 0\end{array}\)
Câu 5: Viết phương trình chính tắc của hypebol có tiêu cự bằng 10 và độ dài trục nhỏ bằng 6.
Hướng dẫn giải
Ta có: \(2c = 10 \Rightarrow c = 5,2b = 6 \Rightarrow b = 3\)
Suy ra \(a = \sqrt {{c^2} - {b^2}} = \sqrt {{5^2} - {3^2}} = 4\)
Vậy phương trình chính tắc của hypebol có dạng \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)
Câu 6: Viết phương trình chính tắc của parabol (P) có đường chuẩn \(\Delta :x + 1 = 0\)
Hướng dẫn giải
Từ phương trình đường chuẩn \(\Delta :x + 1 = 0\) ta có tiêu điểm \(F\left( {1;0} \right)\)
Phương trình chính tắc của parabol có dạng \({y^2} = 2x\)
Luyện tập Ôn tập Chương 9 Toán 10 CTST
Qua bài giảng này giúp các em học sinh:
- Ôn tập và hệ thống lại các kiến thức trọng tâm của chương.
- Áp dụng các kiến thức đã học vào giải các bài tập một cách dễ dàng.
3.1. Bài tập trắc nghiệm Ôn tập Chương 9 Toán 10 CTST
Để củng cố bài học xin mời các em cùng làm Bài kiểm tra Trắc nghiệm Toán 10 Chân trời sáng tạo Bài tập cuối chương 9 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
-
- A. 30o
- B. 45o
- C. 60o
- D. 135o
-
- A. -12
- B. \( - \frac{{25}}{2}\)
- C. -13
- D. \( - \frac{{27}}{2}\)
-
- A. \(\overrightarrow {{u_1}} = \left( { - 1;6} \right).\)
- B. \(\overrightarrow {{u_2}} = \left( {\frac{1}{2};3} \right)\)
- C. \(\overrightarrow {{u_3}} = \left( {5; - 3} \right)\)
- D. \(\overrightarrow {{u_4}} = \left( { - 5;3} \right)\)
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
3.2. Bài tập SGK cuối Chương 9 Toán 10 CTST
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 10 Chân trời sáng tạo Bài tập cuối chương 9 để giúp các em nắm vững bài học và các phương pháp giải bài tập.
Giải bài 1 trang 73 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 73 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 73 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 74 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 74 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 74 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 74 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 8 trang 74 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 9 trang 74 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 10 trang 74 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 11 trang 74 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 12 trang 74 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 13 trang 74 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 14 trang 74 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 15 trang 74 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 16 trang 75 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 17 trang 75 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 18 trang 75 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 1 trang 77 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 2 trang 77 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 3 trang 77 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 4 trang 77 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 5 trang 77 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 6 trang 77 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 7 trang 77 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 8 trang 78 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 9 trang 78 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 10 trang 78 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 11 trang 78 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 12 trang 78 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 1 trang 78 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 2 trang 78 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 3 trang 79 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 4 trang 79 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 5 trang 79 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 6 trang 79 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 7 trang 79 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 8 trang 79 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 9 trang 79 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 10 trang 79 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 11 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 12 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 13 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 14 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 15 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 16 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 17 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 18 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 19 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Hỏi đáp Ôn tập Chương 9 Toán 10 CTST
Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!
Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!
-- Mod Toán Học 10 HỌC247