Để giúp các em học tập hiệu quả môn Toán 10, đội ngũ HỌC247 đã biên soạn và tổng hợp nội dung bài Đường tròn trong mặt phẳng tọa độ. Bài giảng gồm kiến thức cần nhớ về cách viết phương trình đường tròn, phương trình tiếp tuyến của đường tròn,... Bên cạnh đó còn có các bài tập minh họa có hướng dẫn giải chi tiết, giúp các em học tập và củng cố thật tốt kiến thức. Mời các em cùng tham khảo.
Tóm tắt lý thuyết
1.1. Phương trình đường tròn
Điểm \(M\left( {x;y} \right)\) thuộc đường tròn (C), tâm ((a; b), bán kính R khi và chỉ khi \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\). (1) Ta gọi (1) là phương trình của đường tròn (C). |
---|
Nhận xét: Phương trình (1) tương đương với \({x^2} + {y^2} - 2{\rm{a}}x - 2by + \left( {{{\rm{a}}^2} + {b^2} - {R^2}} \right) = 0\).
Phương trình \({x^2} + {y^2} - 2{\rm{a}}x - 2by + c = 0\) là phương trình của một đường tròn (C) khi và chỉ khi \({a^2} + {b^2} - c > 0\). Khi đó, (C) có tâm I(a; b) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} \) |
---|
Ví dụ: Tìm tâm và bán kính của đường tròn (C) có phương trình: \({\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 16\). Viết phương trình đường tròn (C') có tâm J(2; - 1) và có bán kinh gấp đôi bán kính đường tròn (C).
Giải
Ta viết phương trình của (C) ở dạng \({\left( {x - 2} \right)^2} + {\left( {y - \left( { - 3} \right)} \right)^2} = {4^2}\)
Vậy (C) có tâm I = (2;- 3) và bán kinh R= 4.
Đường tròn (C') có tâm J(2; - 1) và có bán kinh R'= 2R= 8, nên có phương trình \({\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} = 64\).
1.2. Phương trình tiếp tuyến của đường tròn
Phương trình tiếp tuyến của đường tròn tâm I(a, b) tại điểm \({M_0}\left( {{x_0};{y_0}} \right)\) nằm trên đường tròn là: \(\left( {a - {x_0}} \right)\left( {x - {x_0}} \right) + \left( {b - {y_0}} \right)\left( {y - {y_0}} \right) = 0\) |
---|
Ví dụ: Cho đường tròn (C) có phương trình \({\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} = 5\). Điểm M(0; 1) có thuộc đường tròn (C) hay không? Nếu có, hãy viết phương trình tiếp tuyến tại M của (C).
Giải
Do \({\left( {0 + 1} \right)^2} + {\left( {1 - 3} \right)^2} = 5\), nên điểm M thuộc (C).
Đường tròn (C) có tâm là I(-1; 3). Tiếp tuyến của (C) tại M(0; 1) có vectơ pháp tuyến \(\overrightarrow {MI} = \left( { - 1;2} \right)\), nên có phương trình
\( - 1\left( {x - 0} \right) + 2\left( {y - 1} \right) = 0 \Leftrightarrow x - 2y + 2 = 0\).
Bài tập minh họa
Câu 1: Viết phương trình đường tròn (C) trong các trường hợp sau:
a) (C) có tâm \(O\left( {0;0} \right)\), bán kính \(R = 4\)
b) (C) có tâm \(I\left( {2; - 2} \right)\), bán kính \(R = 8\)
c) (C) đi qua 3 điểm \(A(1;4),B(0;1),C(4;3)\)
Hướng dẫn giải
a) Đường tròn (C) tâm \(O\left( {0;0} \right)\), bán kính \(R = 4\) có phương trình là: \({x^2} + {y^2} = 16\)
b) Đường tròn (C) tâm \(I\left( {2; - 2} \right)\), bán kính \(R = 8\) có phương trình: \({\left( {x - 2} \right)^2} + {\left( {y + 2} \right)^2} = 64\)
c) Gọi M, N lần lượt là trung điểm của AB, AC ta có: \(M\left( {\frac{1}{2};\frac{5}{2}} \right),N\left( {\frac{5}{2};\frac{7}{2}} \right)\)
Đường trung trực \(\Delta \)của đoạn thẳng AB là đường thẳng đi qua M và nhận vt \(\overrightarrow {BA} = (1;3)\) làm vt pháp tuyến, nên có phương trình \(x + 3y - 8 = 0\)
Đường trung trực d của đoạn thẳng AC là đường thẳng đi qua N và nhận vt \(\overrightarrow {AC} = (3; - 1)\) làm vt pháp tuyến, nên có phương trình \(3x - y - 4 = 0\)
\(\Delta \) cắt d tại điểm \(I(2;2)\) cách đều ba điểm A, B, C suy ra đường tròn (C) cần tìm có tâm \(I(2;2)\) và có bán kính \(R = IA = \sqrt 5 \). Vậy (C) có phương trình: \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 5\)
Câu 2: Viết phương trình tiếp tuyến của đường tròn \((C):{x^2} + {y^2} - 2x - 4y - 20 = 0\) tại điểm \(A(4;6)\)
Hướng dẫn giải
Ta có \({4^2} + {6^2} - 2.4 - 4.6 - 20 = 0\), nên điểm A thuộc (C)
Đường tròn \((C):{x^2} + {y^2} - 2x - 4y - 20 = 0\) có tâm \(I(1;2)\)
Phương trình tiếp tuyến d của (C) tại \(A(4;6)\) là:
\(\begin{array}{l}\left( {4 - 1} \right)\left( {x - 4} \right) + \left( {6 - 2} \right)\left( {y - 6} \right) = 0\\ \Leftrightarrow 3x + 4y + 16 = 0\end{array}\)
Luyện tập Bài 3 Chương 9 Toán 10 CTST
Qua bài giảng trên giúp các em học sinh:
- Lập phương trình đường tròn khi biết toa độ tâm và bán kính hoặc biết toạ độ ba điểm thuộc đường tròn.
- Xác định tâm và bán kính của đường tròn khi biết phương trình của nó.
- Lập phương trình tiếp tuyến của đường tròn khi biết toạ độ của tiếp điểm.
- Vận dụng kiến thức về phương trình đường tròn để giải một số bài toán liên quan đền thực tiến.
3.1. Bài tập trắc nghiệm Bài 3 Chương 9 Toán 10 CTST
Để củng cố bài học xin mời các em cùng làm Bài kiểm tra Trắc nghiệm Toán 10 Chân trời sáng tạo Chương 9 Bài 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
-
- A. \({x^2} + {y^2} - 8x - 6y + 12 = 0\)
- B. \({x^2} + {y^2} +8x - 6y - 12 = 0\)
- C. \({x^2} + {y^2} + 8x + 6y + 12 = 0\)
- D. \({x^2} + {y^2} - 8x - 6y - 12 = 0\)
-
Câu 2:
Tìm tọa độ tâm I và bán kính R của đường tròn \(\left( C \right):{x^2} + {y^2} - 6x + 2y + 6 = 0\).
- A. \(I(3;-1),R=4\)
- B. \(I(-3;1),R=4\)
- C. \(I(3;-1),R=2\)
- D. \(I(-3;1),R=2\)
-
- A. \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = 5.\)
- B. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} = 17.\)
- C. \({\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = \sqrt 5 .\)
- D. \({\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 5.\)
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
3.2. Bài tập SGK Bài 3 Chương 9 Toán 10 CTST
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 10 Chân trời sáng tạo Chương 9 Bài 3 để giúp các em nắm vững bài học và các phương pháp giải bài tập.
Hoạt động khám phá 1 trang 59 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 1 trang 60 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 2 trang 61 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng 1 trang 61 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng 2 trang 61 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 2 trang 61 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 3 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng 3 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 63 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 63 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 1 trang 69 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 2 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 3 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 4 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 5 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 6 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Hỏi đáp Bài 3 Chương 9 Toán 10 CTST
Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!
Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!
-- Mod Toán Học 10 HỌC247