Giải Bài 13 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2
Viết phương trình chính tắc của hypebol thỏa mãn các điều kiện sau:
a) Đỉnh \(\left( { - 6;0} \right)\) và \(\left( {6;0} \right)\); tiêu điểm \(\left( { - 10;0} \right)\) và \(\left( {10;0} \right)\)
b) Độ dài trục thực là 10, độ dài trục ảo là 20
Hướng dẫn giải chi tiết Bài 13
Phương pháp giải
Phương trình Hypebol có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} + {b^2}} \)
Lời giải chi tiết
a) Gọi PTCT của hypebol là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)
+ Đỉnh \(\left( { - 6;0} \right)\) và \(\left( {6;0} \right) \Rightarrow a = 6\)
+ Tiêu điểm \(\left( { - 10;0} \right)\) và \(\left( {10;0} \right) \Rightarrow c = 10\)
\( \Rightarrow b = \sqrt {{c^2} - {a^2}} = \sqrt {{{10}^2} - {6^2}} = 8\)
Phương trình hypebol \(\frac{{{x^2}}}{{36}} - \frac{{{y^2}}}{{64}} = 1\)
b) Gọi PTCT của hypebol là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)
Độ dài trục thực là \(2a = 10 \Rightarrow a = 5\)
Độ dài trục ảo là \(2b = 20 \Rightarrow b = 10\)
Phương trình hypebol \(\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{100}} = 1\)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải Bài 11 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 12 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 14 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 15 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 16 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 17 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 18 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 19 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST