Giải Bài 16 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2
Một nhà mái vòm có mặt cát hình nửa elip cao 6 m, rộng 16 m
a) Hãy chọn hệ tọa độ thích hợp và viết phương trình của elip nói trên
b) Tính khoảng cách thẳng đứng từ một điểm cách chân vách 4 m lên trên mái vòm
Hướng dẫn giải chi tiết Bài 16
Phương pháp giải
Phương trình Elip có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} - {b^2}} \)
Lời giải chi tiết
a) Chọn hệ trục tọa độ có gốc là điểm chính giữa của chiều rộng mái vòm (thẳng đứng).
Gọi phương trình Elip là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)
Ta có: chiều cao của mái vòm là nửa trục nhỏ \( \Rightarrow b = 6\)
Độ rộng của mái vòm là độ dài trục lớn \( \Rightarrow 2a = 16 \Leftrightarrow a = 8\)
Vậy phương trình elip: \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{36}} = 1\)
b) Gọi M là điểm cách chân vách 4 m, suy ra \({x_M} = 8 - 4 = 4\)
Khoảng cách thẳng đứng từ điểm M lên đến mái vòm chính là \(\left| {{y_M}} \right|\)
M thuộc elip nên ta có: \(\frac{{16}}{{64}} + \frac{{{y_M}^2}}{{36}} = 1 \Rightarrow \frac{{{y_M}^2}}{{36}} = \frac{3}{4} \Rightarrow \left| {{y_M}} \right| = \sqrt {36.\frac{3}{4}} = 3\sqrt 3 \approx 5,2\left( m \right)\)
Vậy khoảng cách thẳng đứng từ điểm M lên đến mái vòm là 5,2 m
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải Bài 14 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 15 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 17 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 18 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 19 trang 80 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST