Bài 4: Hệ trục tọa độ - Hình học 10

5 trắc nghiệm 1 hỏi đáp

Sau khi chúng ta đã đi về khái niệm về các vectơ, bài học cuối chương I sẽ là bài Hệ trục tọa độ, đây thật ra đó là hệ trục chúng ta đã học từ lớp 7, phần này chúng ta sẽ nói kỹ hơn về vấn đề đó.

Tóm tắt lý thuyết

1. Trục tọa độ

Khái niệm

Trục tọa độ (trục hoặc trục số) của một đường thẳng trên đó đã xác định một điểm O và một vectơ \(\vec{i}\) có độ dài bằng 1.

Vectơ \(\vec{i}\) gọi là vectơ đơn vị của trục tọa độ.

Vì vậy, đối với mọi điểm M nằm trên trục tọa độ, ta luôn luôn xác định được số m nào đó sao cho \(\vec{OM}=m\vec{i}\). Số m đó gọi là tọa độ điểm M với trục.

Nếu có hai điểm A và B phân biệt nằm trên trục Ox thì tọa độ của vectơ \(\vec{AB}\) được kí hiệu là \(\bar{AB}\) và còn được gọi là độ dài đại số của vectơ \(\vec{AB}\) trên trục Ox.

2. Hệ trục tọa độ Oij

Trên hình đã mô tả đầy đủ về Hệ trục tọa độ. Trục ngang chứa \(\vec{i}\) gọi là trục hoành, trục dọc chứa \(\vec{j}\) gọi là trục tung và được kí hiệu là Oxy hoặc \((O;\vec{i};\vec{j})\)

3. Tọa độ của vectơ đối với hệ trục tọa độ

Đối với hệ trục tọa độ \((O;\vec{i};\vec{j})\), nếu \(\vec{a}=x\vec{i}+y\vec{j}\) thì cặp số \((x;y)\) được gọi là tọa độ của vectơ \(\vec{a}\), kí hiệu là \(\vec{a}=(x;y)\) hoặc \(\vec{a}(x;y)\). x là hoành độ, y là tung độ của vectơ \(\vec{a}\)

Từ định nghĩa trên, ta có nhận xét

\(\vec{a}=(x;y)=\vec{b}=(x';y')\Leftrightarrow \left\{\begin{matrix} x=x'\\ y=y' \end{matrix}\right.\)

4. Biểu thức tọa độ của các vectơ

5. Tọa độ của điểm

Trong mặt phẳng Oxy, tọa độ của vectơ \(\vec{OM}\) chính là tọa độ của điểm \(M(x_M;y_M)\)

Một cách tổng quát, ta có:

Với hai điểm \(M(x_M;y_M)\) và \(N(x_N;y_N)\) thì ta có:

\(\vec{MN}=(x_N-x_M;y_N-y_M)\)

6. Tọa độ trung điểm của đoạn thẳng và tọa độ trọng tâm của tam giác

Nếu M là trung điểm của đoạn thẳng AB thì:

\(x_M=\frac{x_a+x_B}{2};y_M=\frac{y_A+y_B}{2}\)

Nếu G là trọng tâm của tam giác ABC thì:

\(x_G=\frac{x_a+x_B+x_C}{3};y_G=\frac{y_A+y_B+y_C}{3}\)

Bài tập minh họa

1. Bài tập cơ bản

Bài 1: Xác định tính đúng sai của các mệnh đề sau, nếu sai hãy giải thích

1. Hai vectơ \(\vec{a}(3;1)\) và vectơ \(\vec{b}(1;3)\) là hai vectơ bằng nhau.

2. Hai vectơ bằng nhau khi chúng có hoành độ và tung độ bằng nhau.

3. Vectơ \(\vec{a}\) cùng phương với vectơ \(\vec{b}\) nếu vectơ \(\vec{a}\) có tung độ bằng 0.

4. Hai vectơ cùng phương khi hoành độ của vectơ này bằng k lần hoành độ của vectơ kia, tung độ của vectơ này bằng -k lần tung độ vectơ kia.

Hướng dẫn:

Câu 1 là sai vì chúng chỉ có độ lớn bằng nhau, chứ hai vectơ không bằng nhau.

Câu 2 là câu đúng.

Câu 3 là câu sai, vì nếu cùng phương chúng sẽ tỉ lệ hoành và tung theo hệ số k nào đó.

Câu 4 là câu sai vì chúng tỉ lệ theo k hoặc -k chứ không phải hoành là k, tung là -k.

Bài 2: Biểu diễn các vectơ sau lên cùng một mặt phẳng tọa độ

\(\vec{a}=-2\vec{i}\), \(\vec{b}=3\vec{j}\), \(\vec{c}=2\vec{i}-\vec{j}\), \(\vec{d}=\frac{1}{2}\vec{i}+3\vec{j}\)

Hướng dẫn:

2. Bài tập nâng cao

Bài 1: Chứng minh 3 điểm \(A(-3;4);B(1;1);C(9;-5)\) thẳng hàng

Hướng dẫn: Để chứng minh ba điểm này thẳng hàng, ta viết các vectơ \(\vec{AB};\vec{AC}\) rồi xác định hệ số k sao cho hoành và tung của \(\vec{AB}\) đúng bằng k lần hoành và tung của \(\vec{AC}\).

Thật vậy, \(\vec{AB}=(4;-3)\)

\(\vec{AC}=(12;-9)\)

Như vậy, hệ số k được xác định là \(k=3\). Vậy 3 điểm A, B, C thằng hàng.

Bài 2: Trong mặt phẳng tọa độ. Cho 3 điểm \(A(1;2); B(4;1);C(5;-2)\). 

1. Tìm tọa độ trung điểm M của AC.

2. Tìm tọa độ trọng tâm G của tam giác ABC.

3. Tìm tọa độ điểm D sao cho ABCD là hình bình hành.

Hướng dẫn:

1. Do M là trung điểm của AC nên \(x_M=\frac{x_A+x_C}{2},y_M=\frac{y_A+y_C}{2}\)

\(\Leftrightarrow x_M=\frac{1+5}{2},y_M=\frac{2+(-2)}{2}\)\(\Leftrightarrow x_M=3,y_M=0\Leftrightarrow M(3;0)\)

2. G là trọng tâm của tam giác ABC nên \(x_G=\frac{x_A+x_B+x_C}{3},y_M=\frac{y_A+y_B+y_C}{3}\)

\(\Leftrightarrow x_G=\frac{1+4+5}{3},y_G=\frac{2+1+(-2)}{3}\)\(\Leftrightarrow x_G=\frac{10}{3},y_G=\frac{1}{3}\Leftrightarrow G \left ( \frac{10}{3};\frac{1}{3} \right )\)

3. ABCD là hình bình hành, suy ra \(\vec{AB}=\vec{DC}\)

Mà \(\vec{AB}=(4-1;1-2)\Leftrightarrow \vec{AB}=(3;-1)\)

Suy ra \(\left\{\begin{matrix} x_D=5-3\\ y_D=-2-(-1) \end{matrix}\right.\)

Vậy \(D(2;-1)\)

 

-- Mod Toán Học 10 HỌC247