RANDOM

Bài tập 64 trang 92 SGK Toán 9 Tập 2

Giải bài 64 tr 92 sách GK Toán 9 Tập 2

Trên đường tròn bán kính R, lần lượt đặt cùng một chiều, kể từ điểm A, ba cung AB, BC, CD sao cho \(\small sd\widehat{AB}=60^o\), \(\small sd\widehat{BC}=90^o\) và \(\small sd\widehat{CD}=120^o\).

a) Tứ giác ABCD là hình gì?

b) Chứng minh rằng hai đường chéo của tứ giác ABCD vuông góc với nhau.

c) Tính độ dài các cạnh của tứ giác ABCD theo R.

ADSENSE

Hướng dẫn giải chi tiết bài 64

Với bài tập 64 này, chúng ta sẽ sử dụng tính chất của tứ giác nội tiếp, các tam giác cân, vuông cân,... để giải quyết bài toán

Câu a) Ta có tam giác AOB cân tại O và có góc AOB bằng 60 độ nên:

Tam giác AOB đều

\(\small \Rightarrow \widehat{ABO}=60^o\)

Mặc khác, tam giác BOC là tam giác vuông cân:

\(\small \Rightarrow \widehat{OBC}=\widehat{OCB}=45^o\)

\(\small \Rightarrow \widehat{ABC}=60^o+45^o=105^o\)

Xét tam giác OCD cân tại O có góc COD bằng 120 độ:

\(\small \Rightarrow \widehat{OCD}=30^o\)

\(\small \Rightarrow \widehat{BCD}=30^o+45^o=75^o\)

Vậy ta có:

\(\small \widehat{BCD}+\widehat{ABC}=75^o+105^o=180^o\)

Hai góc này ở vị trí trong cùng phía nên AB//CD

Vậy ABCD là hình thang

Mặc khác tứ giác ABCD là tứ giác nội tiếp nên:

ABCD là hình thang cân! (hình thang nội tiếp đường tròn chắc chắn là hình thang cân)

Câu b) Gọi H là giao điểm của AC và BD

Xét tam giác OAC cân tại O, ta có:

\(\small \widehat{OAC}=\widehat{OCA}=\frac{180^o-150^o}{2}=15^o\)

Tương tự đối với tam giác BOD cân tại O, ta có:

\(\small \widehat{OBD}=\widehat{ODB}=\frac{180^o-150^o}{2}=15^o\)

\(\small \Rightarrow \widehat{BAH}=\widehat{ABH}=45^o\)

Vậy tam giác ABH vuông cân tại H

\(\small \Rightarrow AC\perp BD\)

Câu c) 

Ta có tam giác AOB đều

\(\small \Rightarrow AB=R\)

Tam giác OBC và OAD là các tam giác cùng vuông cân tại O

\(\small \Rightarrow BC=AD=R\sqrt{2}\)

Tam giác OCD cân tại O có góc ở đình bằng 120 độ

\(\small \Rightarrow CD=R\sqrt{3}\)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 64 trang 92 SGK Toán 9 Tập 2 HAY thì click chia sẻ 
  • Duy Quang
    Bài II.3 - Bài tập bổ sung (Sách bài tập trang 172)

    Cho đường tròn (O) và điểm A cố định trên đường tròn. Gọi xy là tiếp tuyến với đường tròn tại A. Từ một điểm M nằm trên xy, vẽ tiếp tuyến MB với đường tròn. Gọi H là trực tâm của tam giác MAB

    a) Chứng minh rằng 3 điểm M, H,O thẳng hàng

    b) Tứ giác AOBH là hình gì ?

    c) Khi M di chuyển trên xy thì H di chuyển trên đường nào ?

     

    Theo dõi (0) 1 Trả lời
  • Lê Nhi
    Bài 20 (Sách bài tập - tập 2 - trang 168)

    Hình 98:

    Có một hình nón, bán kính đường tròn đáy là \(\dfrac{m}{2}\left(cm\right)\), chiều cao là 2l (cm) và một hình trụ, bán kính đường tròn đáy m(cm), chiều cao 2l (cm). Người ta mức đầy nước vào hình nón và đổ vào hình trụ (không chứa gì cả) thì độ cao của nước trong hình trụ là :

    (A) \(\dfrac{l}{6}\left(cm\right)\)

    (B) \(l\left(cm\right)\)

    (C) \(\dfrac{5}{6}l\left(cm\right)\)

    (D) \(\dfrac{11}{6}l\left(cm\right)\)

    Hãy chọn kết quả đúng ?

    Theo dõi (0) 1 Trả lời
  • Nguyễn Trung Thành
    Bài II.2 - Bài tập bổ sung (Sách bài tập trang 172)

    Cho nửa đường tròn (O) đường kính AB. Trên nủa mặt phẳng bờ AB chứa nửa đường tròn , vẽ các tia tiếp tuyến Ax và By với nửa đường tròn. Gọi M là điểm thuộc nửa đường tròn, D là giao điểm của AM và By, C là giao điểm của BM và Ax, E là trung điểm của BD. Chứng minh rằng :

    a)\(AC.BD=AB^2\)

    b) ME là tiếp tuyến của nửa đường tròn

    Theo dõi (0) 1 Trả lời
  • Thuy Kim

    Cho tam giác ABC cân tại A, vẽ trung tuyến AM và đường phân giác BD. Xác định các góc tam giác ABC biết BD = 2AM

    Theo dõi (0) 1 Trả lời
  • minh thuận

    cho đường tròn (O,6cm) và điểm A ở trên đường tròn. Qua A kẻ tiếp tuyến Ax , trên à lấy điểm B sao cho AB= 8 cm.

    a: tính OB (m làm được rồi)

    b: Qua A kẻ đường vuông góc với OB, cắt đường tròn ở C. Chứng minh :BC là tiếp tuyến của đường tròn

    Theo dõi (0) 1 Trả lời
  • Thùy Trang

    Cho nửa đường tròn tâm (O) đường kính BC, A là một điểm thuộc nửa dduwwowngf tròn (A khác B,C). Từ A kẻ tiếp tuyến d với đường tròn tâm (O). Kẻ BH,CK cùng vuông góc với d (H,K thuộc d)

    a)CM: đường tròn đường kính HK tiếp xúc BC

    b) Xác định vị trí của điểm A trên nửa đường tròn để diện tích tứ giác BHKC có diện tích lớn nhất. Tính diện tích lớn nhất đó theo BC

    c) Gọi M là tiếp điểm của BC với đường tròn đường kính HK.CM: khi M nằm giữa B và O thì \(\widehat{MAO}=\frac{\cot\widehat{ACB}-\cot\widehat{ABC}}{2}\)

    Theo dõi (0) 1 Trả lời
  • Phạm Phú Lộc Nữ

    Cho nửa đường tròn tâm O.Đường kính AB,AC là dây cung của nó.

    Tiếp tuyến Ax; phân giác góc CAx giao với BC tại D.AD giao với đường tròn tâm O tại E.

    Chứng minh:

    a, Tam giác ABD cân. OE song song với BD.

    b,AC giao với BE tại I. Chứng minh DI vuông góc với AB.

    c,C di động trên nửa đường tròn tâm O thì D chạy trên đường nào

    Theo dõi (0) 1 Trả lời
  • Nguyễn Bảo Trâm

    Cho A nằm ngoài đường tròn tâm O, bán kính R, tiếp tuyến AB, AC (B, C là tiếp điểm)

    Chứng minh: A,B,O,C cùng thuộc một đường tròn

    Theo dõi (0) 1 Trả lời
  • ngọc trang

    Bài1 : Cho đường tròn (O,5cm) điểm M nằm bên ngoài đường tròn. Kể các tiếp tuyến MA, MB với đường tròn ( AB là tiếp điểm) biết góc AMB= 60 độ

    a: Chứng minh AMB là tam giác đều

    b: Tính chu vi tam giác AMB

    c: Tia AO cắt đường tròn ở C; tứ giác BMOC là hình gì? Vì sao?

    Bài 2 : Cho đường tròn (O) đường kính AB, gọi M là một điểm tùy ý trên đường tròn, xy là tiếp tuyến của đường tròn tại A, qua M kẻ MP vuông góc AB, MQ vuông góc xy

    a: tứ giác APMQ là hình gì? Vì sao?

    b: gọi I là trung điểm PQ. Chứng minh OI vuông góc AM

    Theo dõi (0) 1 Trả lời
  • Thu Hang

    Cho tam giác ABC có góc B = 90 độ, góc A = 30 độ, BC = 3cm, đường cao BH 
    a, Tính AB, AC, góc C
    b, Tính diện tích tam giác ABH 
    c, Tính bán kính đường tròn ngoại tiếp tam giác ABC 
    d, Tính AG ( G là trọng tâm tam giác ABC )

    Theo dõi (0) 1 Trả lời
  • Đào Lê Hương Quỳnh

    Cho đoạn thẳng AB= 2a. Từ trung điểm O của AB vẽ tia Ox vuông góc AB. Trên Ox, lấy điểm D sao cho OD=\(\frac{a}{2}\) .Từ B kẻ BC vuông góc với đường thẳng AD

    a/ Tính AD,AC VÀ BC theo a

    b/ Kéo dài DO một đoạn OE=a. chứng minh bốn điểm A,B,C và E cùng nằm trên một đường tròn

    GIÚP VỚI, THANKS NHIỀUvui

    Theo dõi (0) 1 Trả lời
  • Nguyễn Hạ Lan

    Cho tam giác ABC vuông tại A đường cao AH. Biết AB=7,5cm ,AH=6cm

    Tính AC,BC,HB,HC.

    Theo dõi (0) 1 Trả lời
  • Lê Nhật Minh

    cho tam giác ABC vuông tại A . I là tâm đường tròn nội tiếp tam giác có IH vuông góc với BC biết BH=5; CH=12. bán kính đường tròn nội tiếp bằng 6, một cạnh góc vuông =20. tính các cạnh của tam giác ABC

    Theo dõi (0) 1 Trả lời
  • Nguyễn Lê Thảo Trang

    Cho tứ giác ABCD nội tiếp đường tròn đường kính BD. Gọi M,N,P lần lượt là hình chiếu của A trên BC,BD,CD. Chứng minh M,N,P thẳng hàng

    Theo dõi (0) 1 Trả lời
  • thùy trang

    cho tam giác ABC vuông tạ A có AB = 6cm, ac = 8cm. Tính bán kính đường tròn ngoại tiếp R và bán kính đường tròn nội tiếp tam giác

    Theo dõi (0) 1 Trả lời
  • thu phương

    cho tam giác ABC cân tại A nội tiếp đường tròn tâm O đường cao AH cắt đường tròn ở D 

    a)Chứng tỏ AD là đường kính của hình tròn

    b)tính số đo góc ACD

    c)Tính đường cao AH,bán kính đường tròn biết AC=20cm,BC=24cm

    Theo dõi (0) 1 Trả lời
  • Anh Nguyễn

    cho hai đường tròn (o1,r1) và (o2,r2) với r1 > r2, cắt nahu tại hai điểm  A và B. kẻ tiếp tuyến chung DE củ Hi đường tròn với D thuộc  (o1)
    và E thuộc (o2) sao cho B gần tiếp tuyến đó hơn so với A 
    a) chứm minh góDAB = gócBDE
    b)Tia AB cắt tia DE tại M . chứng minh rằng M là trung điểm của DE
    c) đường thẳng EB cắt AD tại P , đường thảng DB cắt AE tại Q. cmr : PQ // DE.

    Theo dõi (0) 1 Trả lời
  • Lê Vinh

    * BÀI : cho ΔABC vuông tại A.Trên AC lấy điểm M. Dựng Đường tròn (O) đường kính MC, BM cắt (O) tại D, AD cắt (O) tại S.
    1> cm ABCD là tứ giác nội tiếp 
    2> cm CA là tia phân giác của góc SCB
    3> gọi E là giao điểm của BC và (O) , cm BA, EM, CD đồng quy 
    4> cm DM là tia phân giác của góc ADE 
    6> cm M là tâm dường tròn nội tiếp ΔADE 
    ps: mb làm giùm tớ nha haha thanks các bạn trc yeu ai yêu toán add friend fb vs tớ nha =))

    Theo dõi (0) 1 Trả lời
  • Trần Phương Khanh

    Cho đường tròn tâm O bán kính 15 cm ,dây BC =24 cm. Các tiếp tuyến của đường tròn tâm O tại B và  C cắt nhau tại A.

    1. Tính khoảng cách OH từ O đến dây BC.
    2. C/m O,H,A thẳng hàng.
    3. Tính AB,AC.
    4. Gọi Mlà giao của AB và CO , N là giao của AC và BO. C/m BCNM là hình thang cân.
    Theo dõi (0) 1 Trả lời
  • Trần Hoàng Mai

    cho đường tròn tâm O bán kính 5dm,điểm M cách O  là 3 dm 

    a)tính độ dài dây ngắn nhất đi qua M 

    b)tính độ dài dây dài nhất đi qua M 

    (bài này là bài 32 sbt toán 9 tập 1 trang 161 ) nhưng trong sách giải khó hiểu quá,ai biets làm giúp mình với

    Theo dõi (0) 1 Trả lời
  • Mai Trang

    Cho đường tròn tâm O đường kính AB. Từ 1 điểm M nằm trên nửa đường tròn vẽ tiếp tuyến xy. Vẽ AD và BC cùng vuông góc với xy.

    1. C/m MC=MD
    2. C/m AD+BC có giá trị không đổi khi M di chuyển trên nửa đường tròn.
    3. C/m AD là tiếp tuyến của đường tròn đường kính CD.
    4. Xác định vị trí của M trên nửa đường tròn để diện tích tứ giác ABCD lớn nhất.
    Theo dõi (0) 1 Trả lời
  • Mai Bảo Khánh

    Cho tam giác ABC cân tại A , nội tiếp đường tròn (O) . Đường cao AH cắt đường tròn tại D.

    a. cm : AD là đương kính của đường tròn (O)

    b. tính số đo góc ACD 

    c. Cho BC=24cm, AC=20 cm . Tính AH và bán kính đường tròn (O)

    Theo dõi (0) 1 Trả lời
  • Nguyễn Hồng Tiến

    Cho đường tròn (O;R) đường kính BC . trên tia đối của tia BC lấy điểm A. Qua A vẽ đường d vuông góc với BC . kẻ tiếp tuyến AM với đường tròn (O;R) ( M là tiếp điểm ) đường thẳng CM cắt đường thẳng d tại E . đường thẳng BE cắt đường tròn (O;R) tại N . CMR :

    a) tứ giác ABME là tứ giác nội tiếp

    b) AN là tiếp tuyến của (O;R)

    c) AE; BM ; CN đồng quy

    mấy pn ơi giúp mik với

    mik làm đc câu a và b rồi còn câu c thôi 

    làm giúp mik câu c với  

    Theo dõi (0) 1 Trả lời
  • ngọc trang

    Cho  ΔABC cân tại A . BC = 12 cm , đường cao AH = 4 cm , tính bán kính đường tròn ngoại tiếp  ΔABC 

    Mọi người giúp mình với 

    Theo dõi (0) 1 Trả lời
  • can chu

    Cho đoạn thẳng AB = 2a có trung điểm O. Trên đường trung trực của AB lấy điểm D sao cho OD = \(\frac{a}{2}\) . Vẽ BC vuông góc với AD tại C. Trên tia đối của tia OD lấy điểm E sao cho OE = a.

    a. Chứng minh : A,B,C,E cùng thuộc một đường tròn

    b. Chứng minh : CE là tia phân giác của góc ACB

    Theo dõi (0) 1 Trả lời
  • Bình Nguyen

    cho đường tròn (C):X^2 + y^2 -2x +6y + 5=0, viết pt tiếp tuyến của C // với d:2x+y-1=0,tìm tọa độ tiếp điểm

    Theo dõi (0) 1 Trả lời
  • Truc Ly

    Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P.Chứng minh rằng: Tứ giác CEHD, nội tiếp .

    Theo dõi (0) 1 Trả lời
  • Aser Aser

    Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE.

    A) Chứng minh tứ giác CEHD nội tiếp .

    B) Bốn điểm A, E, D, B cùng nằm trên một đường tròn.

    C) Chứng minh ED = 1/2BC.

    D) Chứng minh DE là tiếp tuyến của đường tròn (O).

    E) Tính độ dài DE biết DH = 2 Cm, AH = 6 Cm.

    Theo dõi (0) 1 Trả lời
  • Nguyễn Thị Lưu

    tính diện tích xung quanh, diện tích toàn phần và thể tích của hình nón có chiều cao h=8 ( cm) và bán kính đường tròn đáy r=6(cm) 

    >>>>>giải giúp e với :D mai thi rồi 

    Theo dõi (0) 1 Trả lời
  • Nguyễn Quang Minh Tú

    Cho điểm A nằm ngoài (O;R) .Vẽ AB là tiếp tuyến của (O),vẽ ACD là cát tiếp tuyến của (O) (B,C,D thuộc (O)) .Vẽ BH vuông góc OA tại H .BH cắt (O) tại E .AO cắt (O) tại I,K (I nằm giữa A và O).

    a) Chứng minh AB2=AC.AD=AH.AO

    b) Chứng minh AE là tiếp tuyến của (o)

    c) Chứng minh C,D,O,H cùng thuộc một đường tròn

    Theo dõi (0) 1 Trả lời
  • thuy linh

    Cho đường tròn (O;R) có dường kính BC, A là 1 điểm di động trên đường tròn. Vẽ Δ đều ABM có đỉnh M nằm ngoài đường tròn (O). Từ C vẽ CH vuông góc MB.

    a) C/m: OM vuông góc AB

    b) C/m: OM=CH

    c) Gọi D, E, F, G theo thứ tự là trung điểm của OC, CM, MH, OH. C/m tứ giác DEFG là hình thoi.

    Theo dõi (0) 1 Trả lời
  • bach hao

    mọi người giúp tớ bài này với ạ 

    cho tam giác ABC nội tiếp đường tròn tâm O. gọi E,F Lần lượt là giao điểm của các tia phân giác trong va phân giác ngoài của hai góc B và C, đường thẳng EF cắt BC tại , cắt cung nhỏ BC ở M. chứng minh

    a, ba điểm A,E,F thẳng hàng

    b, tứ giác BECF nội tiếp đường tròn tâm 

    c, BI.IC=IF.IE (BI nhân IC bằng IF nhân IE

     

    xin mọi người giúp tớ bài này với >< tớ xắp thi rồi ạ T T mong mọi người giúp đỡ *cúi*

    Theo dõi (0) 1 Trả lời
  • Lê Tấn Thanh

    Cho đường tròn tâm O đường kính AB. Dây cung CD cắt AB tại I . Gọi H và K lần lượt là chân các đường vuông góc kẻ từ A và B đuến CD. Chứng minh rằng CH=Dk

    Theo dõi (0) 1 Trả lời
  • Mai Trang

    Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE.

    1. Chứng minh tứ giác CEHD nội tiếp .
    2. Bốn điểm A, E, D, B cùng nằm trên một đường tròn.
    3. Chứng minh ED = 1/2BC.
    4. Chứng minh DE là tiếp tuyến của đường tròn (O).
    5. Tính độ dài DE biết DH = 2 Cm, AH = 6 Cm
    Theo dõi (0) 1 Trả lời
  • het roi

    Chứng minh CE=CF

    bởi het roi 17/01/2019

    cho 1/2 (o0 đường kính AB, qua điểm C thuộc nửa đường tròn ta kẻ tiếp tuyến d. Gọi E và F lần lượt là các chân đường vuong góc, kẻ từ A và B đến d. Vẽ OH vuông góc với AB. Chứng minh:

    a) CE=CF

    b)AC là tia phân giác của góc BAE

    c) CH^2 = AE*BF

    Theo dõi (0) 1 Trả lời
  • Vũ Hải Yến

    Cho tam giác ABC.Các đường cao là các số tự nhiên.Bán kính đường tròn nội tiếp = 1.Tính các cạnh và đường cao của tam giác ABC. 

     

    Theo dõi (0) 1 Trả lời
  • Hoàng My

    Cho tam giác ABC nhọn nội tiếp đường tròn (O); đường cao CP,BN cắt nhau tại H. Q thuộc cung nhỏ BC; E,F lần lượt đối xứng với Q qua AB,AC. Chứng minh: E,H,F thẳng hàng

    Theo dõi (0) 1 Trả lời
  • A La

    Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn.Từ A kẻ hai tiếp tuyến AB,AC và cát tuyến AMN với đường tròn (B,C,M,N thuộc đường tròn và AM<AN).
    a) Chứng minh hệ thức BM.CN=BN.CM
    b) Gọi E là trung điểm của dây MN,tia CE cắt đường tròn tại điểm thứ hai D. Chứng minh rằng BD//MN 
    c)Xác định vị trí cát tuyến AMN để diện tích tam giác ADN lớn nhất

    Theo dõi (0) 1 Trả lời
  • Ngô Vân

    Cho tam giác ABC vuông ở A, có cạnh BC cố định . Điểm I là giao điểm của 3 đường phân giác trong. Tìm tập hợp các điểm I khi A di động , góc BIC bằng bao nhiêu 

    Theo dõi (2) 1 Trả lời

 

RANDOM