YOMEDIA
NONE

Bài tập 47 trang 108 SBT Toán 9 Tập 2

Bài tập 47 tr 108 sách BT Toán lớp 9 Tập 2

\(a)\) Vẽ một lục giác đều \(ABCDEG\) nội tiếp đường tròn bán kính \(2cm\) rồi vẽ hình \(12\) cạnh đều \(AIBJCKDLEMGN\) nội tiếp đường tròn đó. Nêu cách vẽ.

\(b)\) Tính độ dài cạnh \(AI.\)

\(c)\) Tính bán kính \(r\) của đường tròn nội tiếp hình \(AIBJCKDLEMGN.\)

Hướng dẫn. Áp dụng các công thức ở bài \(46.\)

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Ta sử dụng kiến thức:

+) Đường tròn đi qua tất cả các đỉnh của một đa giác được gọi là đường tròn ngoại tiếp đa giác.

+) Đường tròn tiếp xúc với tất cả các cạnh của đa giác được gọi là đường tròn nội tiếp đa giác.

+) Số đo góc ở tâm chắn mỗi cạnh của đa giác đều \(n\) cạnh bằng \(\dfrac{360^\circ}{n}.\)

Lời giải chi tiết

\(a)\) Cách vẽ:

− Vẽ đường tròn \((0; 2cm)\) 

− Từ điểm \(A\) trên đường tròn \((0; 2cm)\) đặt liên tiếp các cung bằng nhau có dây căng cung \(2cm.\)

\(\overparen{AB}\) \( =\overparen{BC}\) \( =\overparen{CD}\) \( =\overparen{DE}\) \( =\overparen{EG}\)

Nối \(AB, BC, CD, DE, EG, GA\) ta có lục giác đều \(ABCDEG\) nội tiếp trong đường tròn \((0; 2cm).\)

− Kẻ đường kính vuông góc với \(AB\) và \(DE\) cắt đường tròn tại \(I\) và \(L.\)

Ta có: \(\overparen{AI}= \overparen{IB};\) \(\overparen{LD} =\overparen{LE}\)

− Kẻ đường kính vuông góc với \(BC\) và \(EG\) cắt đường tròn tại \(J\) và \(M.\)

\(\overparen{BJ} = \overparen{JC}\); \(\overparen{ME} = \overparen{MG}\)

− Kẻ đường kính vuông góc với \(CD\) và \(AG\) cắt đường tròn tại \(N\) và \(K.\)

\(\overparen{KC}= \overparen{KD};\) \(\overparen{NA} = \overparen{NG}\)

Nối \(AI, IB, BJ, JC, CK, KD, DL,\) \(LE,\) \(EM,\) \(MG,\) \(GN,\) \(NA\)

Ta có đa giác đều \(12\) cạnh \(AIBJCKDLEMGN.\)

\(b)\) \(AI\) là cạnh của đa giác đều \(12\) cạnh.

Kẻ \(OH ⊥ AI\)

\(\widehat {IOH} = \displaystyle{{180^\circ } \over {12}} = 15^\circ \)

Xét tam giác vuông \(IOH\) có: \(OI = \displaystyle{{HI} \over {\sin \widehat {IOH}}} \)

\(\Rightarrow OI = \displaystyle{{AI} \over {2\sin \widehat {IOH}}}\)

\(\Rightarrow AI = OI.2\sin \widehat {IOH}\)

\(AI = 2. 2sin15^\circ  \approx \)\( 1,04 (cm)\)

\(c)\) \(OH = r\) bán kính đường tròn nội tiếp đa giác đều \(12\) cạnh.

Trong tam giác vuông \(OHI\) ta có \(OH = OI.{\rm{cos}}\widehat {HOI} = 2.c{\rm{os15}}^\circ  \approx {\rm{1,93 (cm) }}\)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 47 trang 108 SBT Toán 9 Tập 2 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON