Giải bài 2 tr 125 sách GK Toán Hình lớp 11
Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H tương ứng là trọng tâm và trực tâm của tam giác, các điểm A’, B’, C’ lần lượt là trung điểm của các cạnh BC, CA, AB.
a) Tìm phép vị tự F biến A, B, C tương ứng thành A’, B’, C’
b) Chứng minh rằng O, G, H thẳng hàng.
c) Tìm ảnh của O qua phép vị tự F.
d) Gọi A”, B”, C” lần lượt là trung điểm của các đoạn thẳng AH, BH, CH; A1, B1, C1 theo thứ tự là giao điểm thứ hai của các tia AH, BH, CH với đường tròn (O); A1’, B1’, C1’ tương ứng là chân các đường cao đi qua A, B, C. Tìm ảnh của A, B, C, A1, B1, C1 qua phép vị tự tâm H tỉ số \(\frac{1}{2}\)
e) Chứng minh chín điểm A’, B’, C’, A”, B”, C”, A1’, B1’, C1’ cùng thuộc một đường tròn (đường tròn này gọi là đường tròn Ơ-le của tam giác ABC)
Hướng dẫn giải chi tiết
Câu a:
Dễ thấy \(\overrightarrow{GA'}=-\frac{1}{2}\overrightarrow{GA}, \overrightarrow{GB'} =-\frac{1}{2}\overline{GB}, \overrightarrow{GC'}=-\frac{1}{2}\overrightarrow{GC}\)
Suy ra: f là phép vị tự tâm G tỉ số \(k=-\frac{1}{2}\) biến A,B,C tương ứng thành A',B',C'.
Câu b:
Nhận thấy \(OA'\perp BC, B'C' // BC\Rightarrow A'O\perp B'C'\)
Tương tự \(B'O\perp A'C', C'O\perp A'B'\)
O là trực tâm của tam giác A'B'C' mà H là trực tâm của tam giác ABC.
\(\Rightarrow GO=-\frac{1}{2}\overrightarrow{GH}\Rightarrow\) G, O, H thành hàng.
Câu c:
Ta có: \(f(O)=O_1\Leftrightarrow \overrightarrow{GO'}=-\frac{1}{2}\overrightarrow{GO}\)
⇒ O nằm trên OH và O là trung điểm của OH.
Câu d:
Nhận thấy: ảnh của A,B,C,A1,B1,C1 qua phép vị tự tâm H tỉ số \(\frac{1}{2}\) lần lượt là: A”, B”, C”, A1’, B1’, C1’
Câu e:
Chứng minh A”, B”, C”, A1’, B1’, C1’ cũng thuộc đường tròn (O1). Sau đó chứng minh A', B', C' cùng thuộc đường tròn tâm (O1). Chẳng hạn chứng minh \(O_1A_1'=O_1A'\).
-- Mod Toán 11 HỌC247
-
Trong mặt phẳng với hệ trục tọa độ Oxy, cho biết phép tịnh tiến theo \(\overrightarrow v = \left( {4;6} \right)\), phép tịnh tiến theo \(\overrightarrow v \) biến \(d:x + y + 1 = 0\) thành đường thẳng \(d'\). Khi đó phương trình đường thẳng \(d'\) là: đáp án?
bởi Van Tho 17/07/2021
A. \( - x + y + 9 = 0\) B. \(x + y + 9 = 0\)
C. \(x - y + 9 = 0\) D. \(x + y - 9 = 0\)
Theo dõi (0) 1 Trả lời -
Xác định có thể lập được bao nhiêu vectơ (khác vectơ không) từ 20 điểm phân biệt cho trước?
bởi Bình Nguyen 17/07/2021
A. 380 B. 40 C. 342 D. 400
Theo dõi (0) 1 Trả lời -
Trong mặt phẳng Oxy, có \(\overrightarrow v = \left( {a;b} \right)\). Giả sử ta có phép tịnh tiến theo \(\overrightarrow v \) biến điểm M(x;y) thành điểm M’(x’;y’). Ta có biểu thức tọa độ của phép tịnh tiến theo vectơ \(\overrightarrow v \) là:
bởi Nguyễn Vũ Khúc 17/07/2021
A. \(\left\{ \begin{array}{l}x' + b = x + a\\y' + a = y + b\end{array} \right.\)
B. \(\left\{ \begin{array}{l}x = x' + a\\y = y' + b\end{array} \right.\)
C. \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\)
D. \(\left\{ \begin{array}{l}x' - b = x - a\\y' - a = y - b\end{array} \right.\)
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 5 trang 200 SBT Hình học 11
Bài tập 6 trang 200 SBT Hình học 11
Bài tập 7 trang 200 SBT Hình học 11
Bài tập 8 trang 200 SBT Hình học 11
Bài tập 9 trang 200 SBT Hình học 11
Bài tập 1 trang 124 SGK Hình học 11 NC
Bài tập 2 trang 124 SGK Hình học 11 NC
Bài tập 3 trang 125 SGK Hình học 11 NC
Bài tập 1 trang 201 SBT Hình học 11
Bài tập 4 trang 125 SGK Hình học 11 NC
Bài tập 5 trang 125 SGK Hình học 11 NC
Bài tập 6 trang 125 SGK Hình học 11 NC
Bài tập 7 trang 125 SGK Hình học 11 NC
Bài tập 8 trang 126 SGK Hình học 11 NC
Bài tập 9 trang 126 SGK Hình học 11 NC
Bài tập 2 trang 201 SBT Hình học 11
Bài tập 3 trang 201 SBT Hình học 11
Bài tập 4 trang 201 SBT Hình học 11
Bài tập 5 trang 201 SBT Hình học 11
Bài tập 6 trang 201 SBT Hình học 11
Bài tập 7 trang 202 SBT Hình học 11
Bài tập 8 trang 202 SBT Hình học 11
Bài tập 9 trang 202 SBT Hình học 11
Bài tập 10 trang 202 SBT Hình học 11
Bài tập 11 trang 202 SBT Hình học 11
Bài tập 12 trang 202 SBT Hình học 11
Bài tập 13 trang 203 SBT Hình học 11
Bài tập 14 trang 203 SBT Hình học 11
Bài tập 15 trang 203 SBT Hình học 11
Bài tập 16 trang 203 SBT Hình học 11
Bài tập 17 trang 203 SBT Hình học 11
Bài tập 18 trang 203 SBT Hình học 11
Bài tập 19 trang 204 SBT Hình học 11
Bài tập 20 trang 204 SBT Hình học 11
Bài tập 21 trang 204 SBT Hình học 11
Bài tập 22 trang 204 SBT Hình học 11
Bài tập 23 trang 204 SBT Hình học 11
Bài tập 24 trang 204 SBT Hình học 11
Bài tập 25 trang 205 SBT Hình học 11
Bài tập 26 trang 205 SBT Hình học 11
Bài tập 27 trang 205 SBT Hình học 11
Bài tập 28 trang 205 SBT Hình học 11
Bài tập 29 trang 205 SBT Hình học 11
Bài tập 30 trang 205 SBT Hình học 11
Bài tập 1 trang 125 SGK Hình học 11
Bài tập 3 trang 126 SGK Hình học 11
Bài tập 1 trang 199 SBT Hình học 11
Bài tập 4 trang 126 SGK Hình học 11
Bài tập 5 trang 126 SGK Hình học 11
Bài tập 2 trang 199 SBT Hình học 11
Bài tập 6 trang 126 SGK Hình học 11
Bài tập 7 trang 126 SGK Hình học 11