Bài tập 9 trang 126 SGK Hình học 11 NC
Cho tam giác ABC vuông tại A, AB = a, BC = 2a. Hai tia Bx và Cy cùng vuông góc với mp(ABC) và nằm về một phía đối với mặt phẳng đó. Trên Bx, Cy lần lượt lấy các điểm B’, C’ sao cho BB’ = a, CC’ = m.
a. Với giá trị nào của m thì AB’C’ là tam giác vuông ?
b. Khi tam giác AB’C’ vuông tại B’, kẻ AH ⊥ BC. Chứng minh rằng B’C’H là tam giác vuông. Tính góc giữa hai mặt phẳng (ABC) và (AB’C’).
Hướng dẫn giải chi tiết
Ta có:
\(\begin{array}{l}
A{C^2} = 3{a^2},AB{'^2} = 2{a^2}\\
AC{'^2} = 3{a^2} + {m^2},
\end{array}\)
\(B'C'^2= 4{a^2} + {\left( {m - a} \right)^2}\)
a. Tam giác AB’C’ vuông ở A khi và chỉ khi :
\(5{a^2} + {m^2} - 2ma = 2{a^2} + 3{a^2} + {m^2}\)
Vậy tam giác AB’C’ vuông ở A khi và chỉ khi m = 0
Vậy tam giác AB’C’ vuông ở C’ khi và chỉ khi :
\(2{a^2} = 3{a^2} + {m^2} + 4{a^2} + {\left( {m - a} \right)^2}\)
(điều này không xảy ra)
Tam giác AB’C’ vuông ở B’ khi và chỉ khi :
\(\begin{array}{l}
2{a^2} + 4{a^2} + {\left( {m - a} \right)^2} = 3{a^2} + {m^2}\\
\Leftrightarrow m = 2a
\end{array}\)
Vậy tam giác AB’C’ vuông ở B’ khi và chỉ khi m = 2a
b. Giả sử tam giác AB’C’ vuông ở B’, tức là m = 2a
Vì AH ⊥ BC nên \({a^2} \Rightarrow BH = \frac{a}{2}\)
Từ đó \(HC = \frac{{3a}}{2}\)
Và \(B'{H^2} = {a^2} + \frac{{{a^2}}}{4} = \frac{{5{a^2}}}{4}\)
\(C'{H^2} = \frac{{9{a^2}}}{4} + 4{a^2} = \frac{{25{a^2}}}{4};B'{C^{\prime 2}} = 5{a^2}\)
Như vậy : ,
tức là tam giác B’C’H vuông tại B’
Tính góc giữa mp(ABC) và mp(AB’C’) khi m = 2a.
Gọi I là giao điểm của B’C’ và BC. Do BB’ // CC’ , BB’ = a, CC’ = 2a nên BC = BI, B’C’ = B’I.
Xét phép chiếu lên mp(ABC). Ta có tam giác AIC là hình chiếu của tam giác AIC’. Gọi φ là góc giữa mp(ABC) và mp(AB’C’) thì \({S_{AIC}} = {S_{AIC'}}\cos \varphi \)
Ta có: \({S_{AIC}} = 2{S_{ABC}} = {a^2}\sqrt 3 \)
Mặt khác :
\(\begin{array}{l}
{S_{AIC'}} = \frac{1}{2}IC'.AB'\\
= \frac{1}{2}.2a\sqrt 5 .a\sqrt 2 = {a^2}\sqrt {10}
\end{array}\)
Từ đó : \(\cos \varphi = \frac{{{a^2}\sqrt 3 }}{{{a^2}\sqrt {10} }} = \frac{{\sqrt {30} }}{{10}}\)
Vậy góc giữa mp(ABC) và mp(AB’C’) là φ được tính bởi
-- Mod Toán 11 HỌC247
-
Cho 4 điểm A,B,C và S không dùng cùng thuộc 1 mặt phẳng gọi E và F lần lượt là trung điểm của SC và CB. Trên SA lấy điểm K sao cho EK không sonh song với AC. Tìm giao điểm của đường thẳng BA với mp (EFK).
bởi Haha Haha 12/01/2022
Cho 4 điểm A,B,C và S không dùng cùng thuộc 1 mặt phẳng gọi E và F lần lượt là trung điểm của SC và CB. Trên SA lấy điểm K sao cho EK không sonh song với AC. Tìm giao điểm của đường thẳng BA với mp (EFK)
Theo dõi (0) 0 Trả lời -
Hình chóp \(S.ABCD\)có \(SA \bot \left( {ABCD} \right)\)), đáy\(ABCD\) là hình chữ nhật. Biết\(SA = a,\)\(AD = 2a,\)\(AB = a\sqrt 3 \,.\) Khoảng cách từ điểm \(B\) đến mặt phẳng\(\left( {SCD} \right)\) bằng bao nhiêu?
bởi Đào Lê Hương Quỳnh 18/07/2021
A \(\dfrac{{3a\sqrt 7 }}{7}\).
B \(\dfrac{{2a\sqrt 5 }}{5}\).
C \(\dfrac{{3a\sqrt 2 }}{2}\).
D \(\dfrac{{a\sqrt 3 }}{2}\)
Theo dõi (0) 1 Trả lời -
Cho hình lập phương là \(ABCD.A’B’C’D’\). Xác định được khoảng cách từ điểm B đến mặt phẳng \(A’B’C’D’\) là
bởi thu hảo 19/07/2021
A. 0
B. AC’
C. BB’
D. AB
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 5 trang 200 SBT Hình học 11
Bài tập 6 trang 200 SBT Hình học 11
Bài tập 7 trang 200 SBT Hình học 11
Bài tập 8 trang 200 SBT Hình học 11
Bài tập 9 trang 200 SBT Hình học 11
Bài tập 1 trang 124 SGK Hình học 11 NC
Bài tập 2 trang 124 SGK Hình học 11 NC
Bài tập 3 trang 125 SGK Hình học 11 NC
Bài tập 1 trang 201 SBT Hình học 11
Bài tập 4 trang 125 SGK Hình học 11 NC
Bài tập 5 trang 125 SGK Hình học 11 NC
Bài tập 6 trang 125 SGK Hình học 11 NC
Bài tập 7 trang 125 SGK Hình học 11 NC
Bài tập 8 trang 126 SGK Hình học 11 NC
Bài tập 2 trang 201 SBT Hình học 11
Bài tập 3 trang 201 SBT Hình học 11
Bài tập 4 trang 201 SBT Hình học 11
Bài tập 5 trang 201 SBT Hình học 11
Bài tập 6 trang 201 SBT Hình học 11
Bài tập 7 trang 202 SBT Hình học 11
Bài tập 8 trang 202 SBT Hình học 11
Bài tập 9 trang 202 SBT Hình học 11
Bài tập 10 trang 202 SBT Hình học 11
Bài tập 11 trang 202 SBT Hình học 11
Bài tập 12 trang 202 SBT Hình học 11
Bài tập 13 trang 203 SBT Hình học 11
Bài tập 14 trang 203 SBT Hình học 11
Bài tập 15 trang 203 SBT Hình học 11
Bài tập 16 trang 203 SBT Hình học 11
Bài tập 17 trang 203 SBT Hình học 11
Bài tập 18 trang 203 SBT Hình học 11
Bài tập 19 trang 204 SBT Hình học 11
Bài tập 20 trang 204 SBT Hình học 11
Bài tập 21 trang 204 SBT Hình học 11
Bài tập 22 trang 204 SBT Hình học 11
Bài tập 23 trang 204 SBT Hình học 11
Bài tập 24 trang 204 SBT Hình học 11
Bài tập 25 trang 205 SBT Hình học 11
Bài tập 26 trang 205 SBT Hình học 11
Bài tập 27 trang 205 SBT Hình học 11
Bài tập 28 trang 205 SBT Hình học 11
Bài tập 29 trang 205 SBT Hình học 11
Bài tập 30 trang 205 SBT Hình học 11
Bài tập 1 trang 125 SGK Hình học 11
Bài tập 2 trang 125 SGK Hình học 11
Bài tập 3 trang 126 SGK Hình học 11
Bài tập 1 trang 199 SBT Hình học 11
Bài tập 4 trang 126 SGK Hình học 11
Bài tập 5 trang 126 SGK Hình học 11
Bài tập 2 trang 199 SBT Hình học 11
Bài tập 6 trang 126 SGK Hình học 11
Bài tập 7 trang 126 SGK Hình học 11