Giải bài 2.25 tr 92 SBT Hình học 10
Trong mặt phẳng Oxy cho bốn điểm A(-1; 1), B(0; 2), C(3; 1) và D(0; -2). Chứng minh rằng tứ giác ABCD là hình thang cân.
Hướng dẫn giải chi tiết
Ta có: \(\overrightarrow {AB} = \left( {1;1} \right),\overrightarrow {DC} = \left( {3;3} \right) \Rightarrow \overrightarrow {DC} = 3\overrightarrow {AB} \) suy ra DC // AB và DC = 3AB.
Mặt khác \(\left| {\overrightarrow {AD} } \right| = \sqrt {{1^2} + {3^2}} \) và \(\left| {\overrightarrow {BC} } \right| = \sqrt {{3^2} + {1^2}} \)
Nên ABCD là hình thang cân có hai cạnh bên AD và BC bằng nhau, còn hai đáy là AB và CD trong đó đáy lớn CD dài gấp 3 lần đáy nhỏ AB.
-- Mod Toán 10 HỌC247
-
Tính vecto AM.vecto AN biết M là trung điểm của BC
bởi Nguyễn Thủy
06/11/2018
cho hình vuông ABCD có cạnh bằng a. Gọi M là trung điểm của BC và N là điiểm nằm trên CD sao cho NC=2ND. tính vectoAM nhân vecto AN
Theo dõi (0) 1 Trả lời -
Tìm số đo các góc của tam giác ABC, biết rằng A(5;0), B(0;1), C(3;3)
Theo dõi (0) 2 Trả lời