ON
YOMEDIA
VIDEO

Bài tập 1.29 trang 32 SBT Hình học 10

Giải bài 1.29 tr 32 SBT Hình học 10

Cho tam giác ABC. Dựng \(\overrightarrow {AB'}  = \overrightarrow {BC} ,\overrightarrow {CA'}  = \overrightarrow {AB} \) và \(\overrightarrow {BC'}  = \overrightarrow {CA} \).

a) Chứng minh rằng A là trung điểm của B′C′.

b) Chứng minh các đường thẳng AA′, BB′ và CC′ đồng quy.

YOMEDIA

Hướng dẫn giải chi tiết

 
 

Giải sách bài tập Toán 10 | Giải sbt Toán 10

a) \(\overrightarrow {BC'}  = \overrightarrow {CA}  \Rightarrow \) Tứ giác ACBC′ là hình bình hành \( \Rightarrow \overrightarrow {AC'}  = \overrightarrow {CB} \).

\(\overrightarrow {AB'}  + \overrightarrow {AC'}  = \overrightarrow {BC}  + \overrightarrow {CB}  = \overrightarrow {BB}  = \overrightarrow 0  \Rightarrow A\) là trung điểm của B′C′.

b) Vì tứ giác ACBC′ là hình bình hành nên CC′ chứa trung tuyến của tam giác ABC xuất phát từ đỉnh C.

Tương tự như vậy với AA′, BB′. Do đó AA′, BB′, CC′ đồng quy tại trọng tâm G của tam giác ABC.

 

-- Mod Toán 10 HỌC247

 
Nếu bạn thấy hướng dẫn giải Bài tập 1.29 trang 32 SBT Hình học 10 HAY thì click chia sẻ 
YOMEDIA
  • Nguyễn Thủy Tiên

    Cho tam giác ABC. gọi M, N, P trên các đoạn AB, BC, CA thỏa mãn: \(AM=\dfrac{1}{3}AB\), \(BN=\dfrac{1}{3}BC\), \(CP=\dfrac{1}{3}CA\). Chứng minh rằng: \(\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\overrightarrow{0}\)

    Theo dõi (0) 1 Trả lời
  •  
     
    Nguyễn Minh Minh

    Cho hình thang OABC. M, N lần lượt là trung điểm của OB và OC. Cmr

    \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{OB}-\overrightarrow{OA}\)

    \(\overrightarrow{OM}=\overrightarrow{ON}-\dfrac{1}{2}\overrightarrow{BC}\)

    Theo dõi (0) 2 Trả lời

 

YOMEDIA
1=>1