Bài tập 28 trang 24 SGK Hình học 10 NC
Cho tứ giác ABCD. Chứng minh rằng:
a) Có một điểm G duy nhất sao cho \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \vec 0\). Điểm G như thế gọi là trọng tâm của bốn điểm A, B, C, D. Tuy nhiên, người ta vẫn quen gọi G là trọng tâm của từ giác ABCD.
b) Trọng tâm G là trung điểm của mỗi đoạn thẳng nối các trung điểm hai cạnh đối của tứ giác, nó cũng là trung điểm của đoạn thẳng nối trung điểm hai đường chéo của tam giác.
c) Trọng tâm G nằm trên các đoạn thẳng nối một đỉnh của tứ giác và trọng tâm của tam giác tạo bởi ba đỉnh còn lại.
Hướng dẫn giải chi tiết
a) Gọi O là điểm cố định bất kì, ta có:
\(\begin{array}{*{20}{l}}
{\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \vec 0}\\
\begin{array}{l}
\Leftrightarrow \overrightarrow {OA} - \overrightarrow {OG} + \overrightarrow {OB} - \overrightarrow {OG} + \overrightarrow {OC} \\
- \overrightarrow {OG} + \overrightarrow {OD} - \overrightarrow {OG} = \vec 0
\end{array}\\
{ \Leftrightarrow 4{\mkern 1mu} \overrightarrow {OG} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} }\\
{ \Leftrightarrow \overrightarrow {OG} {\mkern 1mu} = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)}
\end{array}\)
Vậy G là điểm xác định duy nhất sao cho:
\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \)
b)
Gọi I, J lần lượt la trung điểm của AB,CD ta có
\(\begin{array}{l}
\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \\
\Rightarrow 2\overrightarrow {GI} + 2\overrightarrow {GJ} = \overrightarrow 0 \\
\Rightarrow \overrightarrow {GI} + \overrightarrow {GJ} = \overrightarrow 0
\end{array}\)
⇒ G là trung điểm IJ
Tương tự, ta gọi H, K lần lượt là trung điểm của AC, BD ta có
\(\begin{array}{l}
\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \\
\Rightarrow 2\overrightarrow {GH} + 2\overrightarrow {GK} = \overrightarrow 0 \\
\Rightarrow \overrightarrow {GH} + \overrightarrow {GK} = \overrightarrow 0
\end{array}\)
⇒ G là trung điểm HK
Tương tự, ta cũng chứng minh được G là trung điểm của đoạn thẳng nối trung điểm hai đường chéo của tam giác.
c)
Gọi M là trọng tâm của tam giác BCD, ta có
\(\begin{array}{l}
3\overrightarrow {GM} = \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} \\
\Rightarrow 3\overrightarrow {GM} + \overrightarrow {GA} = \overrightarrow 0 \\
\Rightarrow \overrightarrow {GA} = - 3\overrightarrow {GM}
\end{array}\)
Do đó G, A, M thẳng hàng.
Các trường hợp còn lại làm tương tự.Vậy trọng tâm G nằm trên các đoạn thẳng nối một đỉnh của tứ giác và trọng tâm của tam giác tạo bởi ba đỉnh còn lại.
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.