ON
YOMEDIA
VIDEO

Bài tập 1.32 trang 32 SBT Hình học 10

Giải bài 1.32 tr 32 SBT Hình học 10

Cho tứ giác ABCD. Gọi I và J lần lượt là trung điểm của hai đường chéo AC và BD. Chứng minh \(\overrightarrow {AB}  + \overrightarrow {CD}  = 2\overrightarrow {IJ} \).

YOMEDIA

Hướng dẫn giải chi tiết

 
 

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Ta có :

\(\begin{array}{l}
\overrightarrow {IJ}  = \overrightarrow {IA}  + \overrightarrow {AB}  + \overrightarrow {BJ} \\
\overrightarrow {IJ}  = \overrightarrow {IC}  + \overrightarrow {CD}  + \overrightarrow {DJ} 
\end{array}\)

Cộng từng vế hai đẳng thức trên ta được

\(2\overrightarrow {IJ}  = \left( {\overrightarrow {IA}  + \overrightarrow {IC} } \right) + \left( {\overrightarrow {BJ}  + \overrightarrow {DJ} } \right) + \overrightarrow {AB}  + \overrightarrow {CD}  = \overrightarrow {AB}  + \overrightarrow {CD} \)

 

-- Mod Toán 10 HỌC247

 
Nếu bạn thấy hướng dẫn giải Bài tập 1.32 trang 32 SBT Hình học 10 HAY thì click chia sẻ 
YOMEDIA
  • Nguyễn Hạ Lan

    Cho tam giác ABC và A'B'C', có trọng tâm lần lượt là G, G’ CMR: \(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=3\overrightarrow{GG'}\)

    Theo dõi (0) 1 Trả lời
  •  
     
    hà trang

    Cho tam giác ABC. Tìm tập hợp điểm M sao cho: \(\left|\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)

    Theo dõi (0) 1 Trả lời

 

YOMEDIA
1=>1