YOMEDIA
NONE
  • Câu hỏi:

    Tính tổng S các nghiệm của phương trình \(\left( {2\cos 2x + 5} \right)\left( {{{\sin }^4}x - {{\cos }^4}x} \right) + 3 = 0\) trong khoảng \(\left( {0;2\pi } \right)\)

    • A. \(S = \frac{{11\pi }}{6}\)
    • B. \(S = 4\pi \)
    • C. \(S = 5\pi \)
    • D. \(S = \frac{{7\pi }}{6}\)

    Lời giải tham khảo:

    Đáp án đúng: B

    \(\left( {2\cos 2x + 5} \right)\left( {{{\sin }^4} - {{\cos }^4}x} \right) + 3 = 0 \Leftrightarrow \left( {2\cos 2x + 5} \right)\left( {{{\sin }^2}x - {{\cos }^2}x} \right) + 3 = 0\)

    \( \Leftrightarrow  - \left( {2\cos 2x + 5} \right)\cos 2x + 3 = 0 \Leftrightarrow  - 2{\cos ^2}\left( {2x} \right) - 5\cos 2x + 3 = 0 \Leftrightarrow \cos 2x = \frac{1}{2}\)

    \(\cos 2x = \frac{1}{2} \Leftrightarrow x =  \pm \frac{\pi }{6} + k\pi \left( {k \in \mathbb{Z}} \right) \Rightarrow x \in \left\{ {\frac{\pi }{6};\frac{{5\pi }}{6};\frac{{7\pi }}{6};\frac{{11\pi }}{6}} \right\}\)

    Do đó \(S = \frac{\pi }{6} + \frac{{5\pi }}{6} + \frac{{7\pi }}{6} + \frac{{11\pi }}{6} = 4\pi \)

    ADSENSE

Mã câu hỏi: 24248

Loại bài: Bài tập

Chủ đề : Đề thi Trung học phổ thông Quốc Gia

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

ZUNIA9
 

 

YOMEDIA
AANETWORK
OFF