YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng \(a\sqrt 3 \). Gọi O là tâm của đáy ABC, \({d_1}\) là khoảng cách từ A đến mặt phẳng (SBC) và \({d_2}\) là khoảng cách từ O đến mặt phẳng (SBC). Tính \(d = {d_1} + {d_2}\)

    • A. \(d = \frac{{2a\sqrt 2 }}{{11}}\)           
    • B. \(d = \frac{{2a\sqrt 2 }}{{33}}\)           
    • C. \(d = \frac{{8a\sqrt 2 }}{{33}}\)
    • D. \(d = \frac{{8a\sqrt 2 }}{{11}}\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Do tam giác ABC đều tâm O suy ra \(AO \bot BC\) tại M là trung điểm của BC

    Ta có \(AM = \frac{{a\sqrt 3 }}{2},\,\,MO = \frac{1}{3}AM = \frac{{a\sqrt 3 }}{6},\,\,OA = \frac{2}{3}AM = \frac{{a\sqrt 3 }}{3}\)

    Từ giả thiết hình chóp đều suy ra \(SO \bot \left( {ABC} \right),\,\,SO = \sqrt {S{A^2} - O{A^2}}  = \sqrt {3{a^2} - \frac{{3{a^2}}}{9}}  = \frac{{2a\sqrt 6 }}{3}\)

    Dựng \(OK \bot SM,\,\,AH \bot SM \Rightarrow AH//OK;\,\,\,\frac{{OK}}{{AH}} = \frac{{OM}}{{AM}} = \frac{1}{3}\)

    Có \(\left\{ \begin{array}{l}BC \bot SO\\BC \bot AM\end{array} \right. \Rightarrow BC \bot \left( {SAM} \right) \Rightarrow BC \bot OK\)

    Có \(\left\{ \begin{array}{l}OK \bot SM\\OK \bot BC\end{array} \right. \Rightarrow OK \bot \left( {SBC} \right),\,\,AH \bot \left( {SBC} \right)\left( {do\,\,AH//OK} \right)\)

    Từ đó có \({d_1} = d\left( {A,\left( {SBC} \right)} \right) = AH = 3OK;\,\,\,{d_2} = d\left( {O,\left( {SBC} \right)} \right) = OK\)

    Trong tam giác vuông OSM có đường cao OK nên

    \(\frac{1}{{O{K^2}}} = \frac{1}{{O{M^2}}} + \frac{1}{{S{O^2}}} = \frac{{36}}{{3{a^2}}} + \frac{9}{{24{a^2}}} = \frac{{99}}{{8{a^2}}} \Rightarrow OK = \frac{{2a\sqrt 2 }}{{33}}\)

    Vậy \(d = {d_1} + {d_2} = 4OK = \frac{{8a\sqrt 2 }}{{33}}\)

    ATNETWORK

Mã câu hỏi: 24273

Loại bài: Bài tập

Chủ đề : Đề thi Trung học phổ thông Quốc Gia

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON