YOMEDIA
NONE

Bài tập 39 trang 129 SGK Toán 9 Tập 2

Bài tập 39 tr 129 sách GK Toán lớp 9 Tập 2

Một hình chữ nhật \(ABCD\) có \(AB > AD\), diện tích và chu vi của nó theo thứ tự là \(2a^2\) và \(6a\). Cho hình vẽ quay xung quanh cạnh \(AB\), ta được một hình trụ.

Tính diện tích xung quanh và thể tích của hình trụ này. 

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

+) Quay hình chữ nhật quanh một cạnh cố định của nó ta được một hình trụ.

+) Chu vi hình chữ nhật có kích thước \(a, \, b\) là: \(C=2(a+b).\)

+) Diện tích hình chữ nhật có kích thước \(a, \, b\) là: \(S=ab.\)

+) Diện tích xung quanh của hình trụ: \(S_{xq}=2\pi rh.\)

+) Thể tích hình trụ là: \(V=\pi r^2h.\) 

Lời giải chi tiết

Theo đề bài ta có: 

Diện tích hình chữ nhật \(ABCD\) là: \(AB.AD = 2a^2\) (1)

Chu vi hình chữ nhật  là: \(2(AB + CD) = 6a ⇒ AB + CD = 3a\) (2)

Từ (1) và (2), ta có \(AB\) và \(CD\) là nghiệm của phương trình:

\({x^2}-{\rm{ }}3ax{\rm{ }}+{\rm{ }}2{a^2} = {\rm{ }}0\)

\(\begin{array}{l}
{x^2} - ax - 2ax + 2{a^2} = 0\\
\Leftrightarrow x\left( {x - a} \right) - 2a\left( {x - a} \right) = 0\\
\Leftrightarrow \left( {x - a} \right)\left( {x - 2a} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = a\\
x = 2a
\end{array} \right.
\end{array}\)

Theo giả thiết \(AB > AD\) nên ta chọn \(AB = 2a; AD = a\)

Khi quay hình chữ nhật quanh \(AB\) ta được hình trụ có \(h=AB=2a\) và \(r=AD=a.\)

Vậy diện tích xung quanh hình trụ là:

\({S_{xq}} = 2\pi .AD.AB = 2\pi .a.2a = 4{\rm{ }}\pi {a^2}\)

Thể tích hình trụ là:

\(V{\rm{ }} = {\rm{ }}\pi {\rm{ }}.{\rm{ }}A{D^2}.{\rm{ }}AB{\rm{ }} = {\rm{ }}\pi .{\rm{ }}{a^2}.{\rm{ }}2a{\rm{ }} = {\rm{ }}2\pi {a^3}\)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 39 trang 129 SGK Toán 9 Tập 2 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON