Giải bài 3.30 tr 114 SBT Hình học 12
Lập phương trình của mặt phẳng \((\alpha )\) đi qua điểm M(1; 2; 3) và cắt ba tia Ox, Oy, Oz lần lượt tại A, B, C sao cho thể tích tứ diện OABC nhỏ nhất.
Hướng dẫn giải chi tiết
Gọi giao điểm của \((\alpha )\) với ba tia Ox, Oy, Oz lần lượt là A(a; 0; 0), B(0; b; 0), C(0; 0 ; c) (a, b, c > 0).
Mặt phẳng \((\alpha )\) có phương trình theo đoạn chắn là: \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\) (1)
Do \((\alpha )\) đi qua M(1; 2; 3) nên ta thay tọa độ của điểm M vào (1): \(\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 1\)
Thể tích của tứ diện OABC là :
\(V = \frac{1}{3}B.h = \frac{1}{3}.\frac{1}{2}OA.OB.OC = \frac{1}{6}abc\)
Áp dụng bất đẳng thức Cô-si ta có:
\(\begin{array}{l}
1 = \frac{1}{a} + \frac{2}{b} + \frac{3}{c} \ge 3\sqrt[3]{{\frac{6}{{abc}}}} \Rightarrow 1 \ge \frac{{27.6}}{{abc}}\\
\Rightarrow abc \ge 27.6 \Rightarrow V \ge 27
\end{array}\)
Ta có: V đạt giá trị nhỏ nhất \( \Leftrightarrow V = 27 \Leftrightarrow \frac{1}{a} = \frac{2}{b} = \frac{3}{c} = \frac{1}{3} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
{a = 3}\\
{b = 6}\\
{c = 9}
\end{array}} \right.\)
Vậy phương trình mặt phẳng \((\alpha )\) thỏa mãn đề bài là:
\(\frac{x}{3} + \frac{y}{6} + \frac{z}{9} = 1\) hay 6x + 3y + 2z – 18 = 0.
-- Mod Toán 12 HỌC247
-
Trong không gian với hệ tọa độ Oxyz, cho 4 điểm \(A\left(3;3;2\right);B\left(4;-3-3\right);C\left(2;1;1\right);D\left(1;2;1\right)\).
a. Chứng minh rằng A, B, C không thẳng hàng và viết phương trình mặt phẳng (P) đi qua 3 điểm A, B, C
b. Tìm trên mặt phẳng (P) tất cả những điểm E sao cho \(S_{\Delta ODE}\) nhỏ nhất.
Theo dõi (0) 1 Trả lời -
Cho mặt phẳng \(\left(P\right):x+z-5=0\) và 2 điểm \(A\left(1;2;1\right);B\left(3;-2;3\right)\)
Tìm điểm M trên mặt phẳng (P) sao cho :\(MA^2+MB^2\) nhỏ nhất.
Theo dõi (0) 1 Trả lời -
Tìm điểm C trên mp (P): x+y-z+1=0 để CA+CB nhỏ nhất
bởi bich thu 24/10/2018
Cho trước mặt phẳng \(\left(P\right):x+y-x+1=0\) và 2 điểm \(A\left(-2;1;3\right):B\left(3;-5;6\right)\)
a. Tìm tọa độ điểm C trên mặt (P) sao cho CA + CB nhỏ nhất
b. Tìm điểm D trên mặt phẳng (P) sao cho \(\overrightarrow{DA}+\overrightarrow{DB}\) có độ dài ngắn nhất.
Theo dõi (0) 1 Trả lời -
Viết phương trình mặt phẳng đi qua điểm Q(3;-2;-7) và song song với mặt phẳng (\(\pi\)) : 2x-3y+5=0
Theo dõi (0) 1 Trả lời -
Tìm trên mp (P): x+y+z-3=0 điểm D để vt v=vt DA+vt DB+vt DC có độ dài ngắn nhất
bởi May May 24/10/2018
Cho 3 điểm \(A\left(1;2;-3\right);B\left(2;4;5\right);C\left(3;6;7\right)\) và mặt phẳng \(\left(P\right):x+y+z-3=0\)
Tìm trên mặt phẳng (P) điểm D sao cho vecto \(\overrightarrow{v}=\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\) có độ dài ngắn nhất
Theo dõi (0) 1 Trả lời -
Cho mặt phẳng \(\left(P\right):x+y+z-3=0\) và điểm \(A\left(1;2;-1\right)\)
Tìm tọa độ điểm A' là hình chiếu của A trên (P) và tọa độ A" đối xứng với A qua (P)
Theo dõi (0) 1 Trả lời -
Viết phương trình mặt phẳng đi qua điểm A và vuông góc với 2 mp (P),(Q)
bởi Nguyễn Anh Hưng 11/10/2018
Viết phương trình mặt phẳng đi qua điểm A(1;1;1) đồng thời vuông góc với cả 2 mặt phẳng :
\(\left(P\right):x+2y+3z+4=0\)
\(\left(Q\right):3x+2y-z=1=0\)
Theo dõi (0) 1 Trả lời -
Viết pt mp (P) qua 2 điểm A(3;1;1), B(2;-1;2) và vuông góc với mặt phẳng alpha
bởi Phan Thị Trinh 11/10/2018
Trong không gian Oxyz cho 2 điểm A(3;1;1); B(2;-1;2) và mặt phẳng \(\left(\alpha\right):2x-y-2z+1=0\)
a) Viết phương trình mặt phẳng (P) qua 2 điểm A, B và vuông góc với mặt phẳng\(\left(\alpha\right)\)
b) Viết phương trình mặt cầu (S) tâm A và tiếp xúc với mặt phẳng \(\left(\alpha\right)\)
Theo dõi (0) 1 Trả lời -
Tính thể tích khối tứ diện SEBH theo a biết SA=SB=SC=a
bởi Lê Minh 11/10/2018
Cho hình chóp S.ABC có SA=SB=SC=a đồng thời SA,SB,SC đôi 1 vuông góc với nhau tại S . Gọi H,I,K lần lượt là trung điểm các cạnh AB,AC,BC . Gọi D là điểm đối xứng của S qua K,E lad giao điểm của đường thẳng AD với mặt phẳng (SHI). Chứng minh rằng AD vuông góc với SE và tính thể tích của khối diệm SEBH theo a
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 3.28 trang 114 SBT Hình học 12
Bài tập 3.29 trang 114 SBT Hình học 12
Bài tập 15 trang 89 SGK Hình học 12 NC
Bài tập 16 trang 89 SGK Hình học 12 NC
Bài tập 17 trang 89 SGK Hình học 12 NC
Bài tập 18 trang 90 SGK Hình học 12 NC
Bài tập 19 trang 90 SGK Hình học 12 NC
Bài tập 20 trang 90 SGK Hình học 12 NC
Bài tập 21 trang 90 SGK Hình học 12 NC