Giải bài 4.38 trang 72 SGK Toán 10 Kết nối tri thức tập 1
Cho ba vectơ \(\overrightarrow a ,\;\overrightarrow b ,\;\overrightarrow u \) với \(|\overrightarrow a |\; = \;\,|\overrightarrow b |\; = 1\) và \(\overrightarrow a \bot \overrightarrow b \). Xét một hệ trục Oxy với các vectơ đơn vị \(\overrightarrow i = \overrightarrow a ,\;\overrightarrow j = \overrightarrow b .\) Chứng minh rằng:
a) Vectơ \(\overrightarrow u \) có tọa độ là \((\overrightarrow u \,.\,\overrightarrow a \,;\,\overrightarrow u \,.\,\overrightarrow b )\)
b) \(\overrightarrow u = (\overrightarrow u \,.\,\overrightarrow a \,).\overrightarrow a + (\,\overrightarrow u \,.\,\overrightarrow b ).\overrightarrow b \)
Hướng dẫn giải chi tiết
Phương pháp giải
a) Trên hệ trục Oxy mới, xác định hoành độ, tung độ của vectơ \(\overrightarrow u \)
+) \(\overrightarrow u \,.\,\overrightarrow a = |\overrightarrow u| \,.\,|\overrightarrow a|. cos(overrightarrow u \,.\,\overrightarrow a) \)
b) Vectơ \(\overrightarrow u \) có tọa độ \((x\,;y)\) trong hệ trục Oxy với các vectơ đơn vị \(\overrightarrow i ;\;\overrightarrow j \) thì \(\overrightarrow u = x\,.\,\overrightarrow i + y.\,\overrightarrow j \)
Hướng dẫn giải
a) Trên mặt phẳng tọa độ, lấy các điểm A, B, C sao cho \(\overrightarrow {OA} = \overrightarrow a ;\;\overrightarrow {OB} = \overrightarrow b ;\;\overrightarrow {OC} = \overrightarrow u \)
Trên hệ trục Oxy với các vectơ đơn vị \(\overrightarrow i = \overrightarrow a ,\;\overrightarrow j = \overrightarrow b \), lấy M, N là hình chiếu của C trên Ox, Oy.
Gọi tọa độ của \(\overrightarrow u \)là \(\left( {x;y} \right)\). Đặt \(\alpha = \left( {\overrightarrow u ,\overrightarrow a } \right)\).
+) Nếu \({0^o} < \alpha < {90^o}\): \(x = OM = \;|\overrightarrow u |.\cos \alpha = \;|\overrightarrow u |.\cos \alpha .\;|\overrightarrow a |\; = \overrightarrow u \,.\,\overrightarrow a \,;\)
+) Nếu \({90^o} < \alpha < {180^o}\): \(x = - OM = \; - |\overrightarrow u |.\cos ({180^o} - \alpha ) = \;|\overrightarrow u |.\cos \alpha \; = \overrightarrow u \,.\,\overrightarrow a \,;\)
Như vậy ta luôn có: \(x = \overrightarrow u .\overrightarrow a \)
Chứng minh tương tự, ta có: \(y = \overrightarrow u .\overrightarrow b \)
Vậy vectơ \(\overrightarrow u \) có tọa độ là \((\overrightarrow u \,.\,\overrightarrow a \,;\,\overrightarrow u \,.\,\overrightarrow b )\)
b) Trong hệ trục Oxy với các vectơ vectơ đơn vị \(\overrightarrow i = \overrightarrow a ,\;\overrightarrow j = \overrightarrow b \), vectơ \(\overrightarrow u \) có tọa độ là \((\overrightarrow u \,.\,\overrightarrow a \,;\,\overrightarrow u \,.\,\overrightarrow b )\)
\(\begin{array}{l} \Rightarrow \overrightarrow u = (\overrightarrow u \,.\,\overrightarrow a \,).\overrightarrow i + (\,\overrightarrow u \,.\,\overrightarrow b ).\overrightarrow j \\ \Leftrightarrow \overrightarrow u = (\overrightarrow u \,.\,\overrightarrow a \,).\overrightarrow a + (\,\overrightarrow u \,.\,\overrightarrow b ).\overrightarrow b \end{array}\)
-- Mod Toán 10 HỌC247
-
Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) đều khác \(\overrightarrow 0 \). Khẳng định cho sau đúng hay sai: Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng thì cùng phương.
bởi thu hằng 05/09/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Giải bài 4.36 trang 72 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.37 trang 72 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.39 trang 72 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.39 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.40 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.41 trang 67 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.42 trang 67 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.43 trang 67 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.44 trang 67 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.45 trang 67 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.46 trang 67 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.47 trang 68 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.48 trang 68 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.49 trang 68 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.50 trang 68 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.51 trang 68 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.52 trang 68 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.53 trang 68 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.54 trang 69 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.55 trang 69 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.56 trang 69 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.57 trang 69 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.58 trang 69 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.59 trang 69 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.60 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.61 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.62 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.63 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.64 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.65 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.66 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.67 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.68 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.69 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.70 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT