YOMEDIA
NONE

Giải bài 4.64 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.64 trang 70 SBT Toán 10 Kết nối tri thức tập 1

Cho tứ giác lồi \(ABCD,\) không có hai cạnh nào song song. Gọi \(E,\,\,F\) theo thứ tự là trung điểm của \(AB,\,\,CD.\) Gọi \(K,\,\,L,\,\,M,\,\,N\) lần lượt là trung điểm của \(AF,\,\,CE,\,\,BF,\,\,DE.\)

a) Chứng minh rằng tứ giác \(KLMN\) là một hình bình hành.

b) Gọi \(I\) là giao điểm của \(KM,\,\,LN.\) Chứng minh rằng \(E,\,\,I,\,\,F\) thẳng hàng.

ATNETWORK

Hướng dẫn giải chi tiết Bài 4.64

Phương pháp giải

a) Tính: \(\overrightarrow {AE}  + \overrightarrow {FC}  =  = 2\overrightarrow {KL} \), \(\overrightarrow {EB}  + \overrightarrow {DF}  = 2\overrightarrow {NM} \)  => \(\overrightarrow {AE}  + \overrightarrow {FC}  = \overrightarrow {EB}  + \overrightarrow {DF} \) 

Suy ra \(\overrightarrow {KL}  = \overrightarrow {NM} \). Vậy ta có điều cần chứng minh

b) Gọi \(I\) là giao điểm của \(KM,\,\,LN.\)

Tính \(\overrightarrow {EI} = ? \overrightarrow {EF} \)

\( \Rightarrow \) \(\overrightarrow {EI} \) và \(\overrightarrow {EF} \) cùng hướng

Vậy ba điểm \(E,\,\,I,\,\,F\) thẳng hàng

Lời giải chi tiết

a) Ta có: \(\overrightarrow {AE}  + \overrightarrow {FC}  = \left( {\overrightarrow {AK}  + \overrightarrow {KL}  + \overrightarrow {LE} } \right) + \left( {\overrightarrow {FK}  + \overrightarrow {KL}  + \overrightarrow {LC} } \right)\)

\( = 2\overrightarrow {KL}  + \left( {\overrightarrow {AK}  + \overrightarrow {FK} } \right) + \left( {\overrightarrow {LE}  + \overrightarrow {LC} } \right)\)

\( = 2\overrightarrow {KL} \)  (1)

Ta có: \(\overrightarrow {EB}  + \overrightarrow {DF}  = \left( {\overrightarrow {EN}  + \overrightarrow {NM}  + \overrightarrow {MB} } \right) + \left( {\overrightarrow {DN}  + \overrightarrow {NM}  + \overrightarrow {MF} } \right)\)

\( = 2\overrightarrow {NM}  + \left( {\overrightarrow {EN}  + \overrightarrow {DN} } \right) + \left( {\overrightarrow {MB}  + \overrightarrow {MF} } \right)\)

\( = 2\overrightarrow {NM} \)  (2)

Ta có: \(\overrightarrow {AE}  + \overrightarrow {FC}  = \overrightarrow {EB}  + \overrightarrow {DF} \) (3)

Từ (1), (2) và (3) \( \Rightarrow \) \(\overrightarrow {KL}  = \overrightarrow {NM} \)

\( \Rightarrow \) tứ giác \(MNKL\) là hình bình hành.

b)  Gọi \(I\) là giao điểm của \(KM,\,\,LN.\)

Ta có: \(\overrightarrow {EI}  = \frac{1}{2}\left( {\overrightarrow {EN}  + \overrightarrow {EL} } \right) = \frac{1}{2}\left( {\frac{1}{2}\overrightarrow {ED}  + \frac{1}{2}\overrightarrow {EC} } \right)\)

\(\begin{array}{l} = \frac{1}{4}\left( {\overrightarrow {ED}  + \overrightarrow {EC} } \right) = \frac{1}{4}.2\overrightarrow {EF} \\ = \frac{1}{2}\overrightarrow {EF} \end{array}\)

\( \Rightarrow \) \(\overrightarrow {EI} \) và \(\overrightarrow {EF} \) cùng hướng

\( \Rightarrow \) ba điểm \(E,\,\,I,\,\,F\) thẳng hàng

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 4.64 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
NONE
ON