Giải bài 4.66 trang 71 SBT Toán 10 Kết nối tri thức tập 1
Cho bốn điểm \(A,\,\,B,\,\,C,\,\,D\) trong mặt phẳng. Chứng minh rằng
\(\overrightarrow {AB} .\overrightarrow {CD} + \overrightarrow {BC} .\overrightarrow {AD} + \overrightarrow {CA} .\overrightarrow {BD} = 0.\)
Hướng dẫn giải chi tiết Bài 4.66
Phương pháp giải
Ta có: \(\overrightarrow {AD} = \overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} \)
\(\overrightarrow {CA} = \overrightarrow {BA} - \overrightarrow {BC} \)
\(\overrightarrow {BD} = \overrightarrow {BC} + \overrightarrow {CD} \)
Lời giải chi tiết
Ta có:
\(\overrightarrow {AB} .\overrightarrow {CD} + \overrightarrow {BC} .\overrightarrow {AD} + \overrightarrow {CA} .\overrightarrow {BD} = \overrightarrow {AB} .\overrightarrow {CD} + \overrightarrow {BC} \left( {\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} } \right) + \left( {\overrightarrow {BA} - \overrightarrow {BC} } \right)\left( {\overrightarrow {BC} + \overrightarrow {CD} } \right)\)
\( = \overrightarrow {AB} .\overrightarrow {CD} + \overrightarrow {BC} .\overrightarrow {AB} + {\overrightarrow {BC} ^2} + \overrightarrow {BC} .\overrightarrow {CD} + \overrightarrow {BA} .\overrightarrow {BC} + \overrightarrow {BA} .\overrightarrow {CD} - {\overrightarrow {BC} ^2} - \overrightarrow {BC} .\overrightarrow {CD} \)
\( = \left( {\overrightarrow {AB} .\overrightarrow {CD} + \overrightarrow {BA} .\overrightarrow {CD} } \right) + \left( {\overrightarrow {BC} .\overrightarrow {AB} + \overrightarrow {BA} .\overrightarrow {BC} } \right) + \left( {{{\overrightarrow {BC} }^2} - {{\overrightarrow {BC} }^2}} \right) + \left( {\overrightarrow {BC} .\overrightarrow {CD} - \overrightarrow {BC} .\overrightarrow {CD} } \right) = 0\)
\( \Rightarrow \,\,\overrightarrow {AB} .\overrightarrow {CD} + \overrightarrow {BC} .\overrightarrow {AD} + \overrightarrow {CA} .\overrightarrow {BD} = 0\) (đpcm)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 4.64 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.65 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.67 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.68 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.69 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.70 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT