YOMEDIA
NONE

Giải bài 4.59 trang 69 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.59 trang 69 SBT Toán 10 Kết nối tri thức tập 1

Cho hình bình hành \(ABCD\) tâm \(O.\) Gọi \(M,\,\,N\) theo thứ tự là trung điểm của \(BC,\,\,AD.\) Gọi \(I,\,\,J\) lần lượt là giao điểm của \(BD\) với \(AM,\,\,CN.\) Xét các cevtơ khác \(\overrightarrow 0 ,\) các đầu mút lấy từ các điểm \(A,\,\,B,\,\,C,\,\,D,\,\,M,\,\,N,\,\,I,\,\,J,\,\,O.\)

a) Hãy chỉ ra những vectơ bằng vectơ \(\overrightarrow {AB} ;\) những vectơ cùng hướng với \(\overrightarrow {AB} .\)

b) Chứng minh ằng \(BI = IJ = JD.\)

ATNETWORK

Hướng dẫn giải chi tiết Bài 4.59

Phương pháp giải

a) Liệt kê các vectơ bằng vectơ \(\overrightarrow {AB} \)

b) \(I\) là trọng tâm của \(\Delta ABC\)

Tính \(\overrightarrow {JD} \), \(\overrightarrow {IJ} \) =>  \(\overrightarrow {BI} \)

Lời giải chi tiết

a) Các vectơ bằng vectơ \(\overrightarrow {AB} \) là: \(\overrightarrow {AB} ,\,\,\overrightarrow {NM} ,\,\,\overrightarrow {CD} \)

Các vectơ cùng hướng với \(\overrightarrow {AB} \) là: \(\overrightarrow {AB} ,\,\,\overrightarrow {NO} ,\,\,\overrightarrow {OM} ,\,\,\overrightarrow {CD} \)

b) Ta có: \(I\) là trọng tâm của \(\Delta ABC\)

\( \Rightarrow \) \(\overrightarrow {BI}  = \frac{2}{3}\overrightarrow {BO}  = \frac{2}{3}.\frac{1}{2}\overrightarrow {BD}  = \frac{1}{3}\overrightarrow {BD} \)      (1)

Ta có: \(J\) là trọng tâm của \(\Delta ACD\)

\( \Rightarrow \) \(\overrightarrow {JD}  = \frac{2}{3}\overrightarrow {OD}  = \frac{2}{3}.\frac{1}{2}\overrightarrow {BD}  = \frac{1}{3}\overrightarrow {BD} \)      (2)

Ta có: \(\overrightarrow {BD}  = \overrightarrow {BI}  + \overrightarrow {IJ}  + \overrightarrow {JD} \)

\( \Rightarrow \) \(\overrightarrow {IJ}  = \overrightarrow {BD}  - \overrightarrow {BI}  - \overrightarrow {JD}  = \overrightarrow {BD}  - \frac{1}{3}\overrightarrow {BD}  - \frac{1}{3}\overrightarrow {BD}  = \frac{1}{3}\overrightarrow {BD} \)      (3)

Từ (1), (2) và (3) \( \Rightarrow \) \(\overrightarrow {BI}  = \overrightarrow {IJ}  = \overrightarrow {JD} \) \( \Rightarrow \) \(BI = IJ = JD\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 4.59 trang 69 SBT Toán 10 Kết nối tri thức tập 1 - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON