Giải bài 4.61 trang 70 SBT Toán 10 Kết nối tri thức tập 1
Cho tam giác \(ABC\) có \(AB = 4,\,\,AC = 5\) và \(\widehat {CAB} = {60^ \circ }.\)
a) Tính tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AC} ,\,\,\overrightarrow {AB} .\overrightarrow {BC} .\)
b) Lấy các điểm \(M,\,\,N\) thỏa mãn \(2\overrightarrow {AM} + 3\overrightarrow {MC} = \overrightarrow 0 \) và \(\overrightarrow {NB} + x\overrightarrow {NC} = \overrightarrow 0 \,\,\left( {x \ne - 1} \right).\) Xác định \(x\) sao cho \(AN\) vuông góc với \(BM.\)
Hướng dẫn giải chi tiết Bài 4.61
Phương pháp giải
a) Tính: \(\overrightarrow {AB} .\overrightarrow {AC} \)
b) Để \(AN \bot BM\) \( \Leftrightarrow \) \(\overrightarrow {AN} .\overrightarrow {BM} = 0\)
Lời giải chi tiết
a) Ta có: \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.\cos \widehat {CAB} = 4.5.\cos {60^ \circ } = 10\)
\(\overrightarrow {AB} .\overrightarrow {BC} = \overrightarrow {AB} \left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = \overrightarrow {AB} .\overrightarrow {AC} - {\overrightarrow {AB} ^2} = 10 - {4^2} = - 6\)
b) Ta có: \(2\overrightarrow {AM} + 3\overrightarrow {MC} = \overrightarrow 0 \)
\( \Leftrightarrow \) \(2\left( {\overrightarrow {AB} + \overrightarrow {BM} } \right) + 3\left( {\overrightarrow {BC} - \overrightarrow {BM} } \right) = \overrightarrow 0 \)
\( \Leftrightarrow \) \(\overrightarrow {BM} = - 2\overrightarrow {AB} - 3\overrightarrow {BC} = 2\overrightarrow {AB} + 3\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = - \overrightarrow {AB} + 3\overrightarrow {AC} \) (1)
Ta có: \(\overrightarrow {NB} + x\overrightarrow {NC} = \overrightarrow 0 \)
\( \Leftrightarrow \) \(\left( {\overrightarrow {AB} - \overrightarrow {AN} } \right) + x\left( {\overrightarrow {AC} - \overrightarrow {AN} } \right) = \overrightarrow 0 \)
\( \Leftrightarrow \) \(\left( {1 + x} \right)\overrightarrow {AN} = \overrightarrow {AB} + x\overrightarrow {AC} \) (2)
Từ (1) và (2) \( \Rightarrow \) \(\left( {1 + x} \right)\overrightarrow {AN} .\overrightarrow {BM} = \left( {\overrightarrow {AB} + x\overrightarrow {AC} } \right)\left( { - \overrightarrow {AB} + 3\overrightarrow {AC} } \right)\)
\( \Leftrightarrow \) \(\left( {1 + x} \right)\overrightarrow {AN} .\overrightarrow {BM} = - {\overrightarrow {AB} ^2} + 3\overrightarrow {AB} .\overrightarrow {AC} - x\overrightarrow {AC} .\overrightarrow {AB} + 3x{\overrightarrow {AC} ^2}\)
\( \Leftrightarrow \) \(\left( {1 + x} \right)\overrightarrow {AN} .\overrightarrow {BM} = - 16 + 3.10 - x.10 + 3x.25 = 65x + 14\)
Để \(AN \bot BM\) \( \Leftrightarrow \) \(\overrightarrow {AN} .\overrightarrow {BM} = 0\)
\( \Leftrightarrow \) \(65x + 14 = 0\) \( \Leftrightarrow \) \(x = - \frac{{14}}{{64}}\) (thỏa mãn)
Vậy \(x = - \frac{{14}}{{64}}\) thì \(AN \bot BM\)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 4.59 trang 69 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.60 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.62 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.63 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.64 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.65 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.66 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.67 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.68 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.69 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.70 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT