Giải bài 4.53 trang 68 SBT Toán 10 Kết nối tri thức tập 1
Cho tam giác \(ABC\) có \(AB = 1,\,\,BC = 2\) và \(\widehat {ABC} = {60^ \circ }.\) Tích vô hướng \(\overrightarrow {BC} .\overrightarrow {CA} \) bằng
A. \(\sqrt 3 \)
B. \( - \sqrt 3 \)
C. \(3\)
D. \( - 3\)
Hướng dẫn giải chi tiết Bài 4.53
Phương pháp giải
- Áp dụng định lý cosin để tính \(AC\): \(A{C^2} = A{B^2} + B{C^2} - 2AB.BC.\cos \widehat {ABC}\)
- Áp dụng định lý sin để tính góc \(\widehat {ACB}\): \(\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{AC}}{{\sin \widehat {ABC}}}\)
- Áp dụng công thức tính tích vô hướng của \(\overrightarrow {BC} .\overrightarrow {CA} \)
Lời giải chi tiết
Gọi \(D\) là điểm đối xứng với \(B\) qua \(C\)
Áp dụng định lý cosin, ta có:
\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} - 2AB.BC.\cos \widehat {ABC}\\ \Rightarrow \,\,A{C^2} = 1 + 4 - 2.1.2.\cos {60^ \circ } = 3\\ \Rightarrow \,\,AC = \sqrt 3 \end{array}\)
Áp dụng định lý sin, ta có:
\(\begin{array}{l}\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{AC}}{{\sin \widehat {ABC}}}\,\, \Leftrightarrow \,\,\frac{1}{{\sin \overrightarrow {ACB} }} = \frac{{\sqrt 3 }}{{\sin {{60}^ \circ }}}\\ \Leftrightarrow \,\,\sin \widehat {ACB} = \frac{{\sin {{60}^ \circ }}}{{\sqrt 3 }} = \frac{1}{2}\\ \Leftrightarrow \,\,\widehat {ACB} = {30^ \circ }\,\, \Rightarrow \,\,\widehat {ACD} = {180^ \circ } - {30^ \circ } = {150^ \circ }\end{array}\)
Ta có: \(\overrightarrow {BC} .\overrightarrow {CA} = \overrightarrow {CD} .\overrightarrow {CA} = CD.CA.\cos \left( {\overrightarrow {CD} ,\overrightarrow {CA} } \right) = 2.2.\cos {150^ \circ } = - 3\)
Chọn D.
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 4.51 trang 68 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.52 trang 68 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.54 trang 69 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.55 trang 69 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.56 trang 69 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.57 trang 69 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.58 trang 69 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.59 trang 69 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.60 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.61 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.62 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.63 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.64 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.65 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.66 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.67 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.68 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.69 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.70 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT