Giải bài 4.60 trang 70 SBT Toán 10 Kết nối tri thức tập 1
Trên cạnh \(BC\) của tam giác \(ABC\) lấy các điểm \(M,\,\,N,\) không trùng với \(B\) và \(C\) sao cho \(BM = MN = NC.\)
a) Chứng minh rằng hai tam giác \(ABC\) và \(AMN\) có cùng trọng tâm.
b) Gọi \(G\) là trọng tâm của tam giác \(ABC.\) Đặt \(\overrightarrow {GB} = \overrightarrow u \) và \(\overrightarrow {GC} = \overrightarrow v .\) hãy biểu thị các vectơ sau qua hai vectơ \(\overrightarrow u \) và \(\overrightarrow v :\,\,\overrightarrow {GA} ,\,\,\overrightarrow {GM} ,\,\,\overrightarrow {GN} .\)
Hướng dẫn giải chi tiết Bài 4.60
Phương pháp giải
a) Chứng minh hai tam giác \(ABC\) và \(AMN\) có cùng trọng tâm.
b) Ta có: \(G\) là trọng tâm của tam giác \(ABC.\) Tính \( \(\overrightarrow {GA} \), \( \(\overrightarrow {GM} \), \( \(\overrightarrow {GN} \)
Lời giải chi tiết
a) Ta có: \(\overrightarrow {AA} + \overrightarrow {BM} + \overrightarrow {CN} = \overrightarrow {BM} + \overrightarrow {CN} = \overrightarrow 0 \)
\( \Rightarrow \) hai tam giác \(ABC\) và \(AMN\) có cùng trọng tâm.
b) Gọi \(G\) là trọng tâm của tam giác \(ABC.\) Đặt \(\overrightarrow {GB} = \overrightarrow u \) và \(\overrightarrow {GC} = \overrightarrow v .\)
Ta có: \(G\) là trọng tâm của tam giác \(ABC.\)
\( \Rightarrow \) \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
\( \Rightarrow \) \(\overrightarrow {GA} = - \overrightarrow {GB} - \overrightarrow {GC} = - \overrightarrow u - \overrightarrow v = - \left( {\overrightarrow u + \overrightarrow v } \right)\)
Ta có: \(\overrightarrow {GM} = \overrightarrow {GB} + \overrightarrow {BM} \)
\( = \overrightarrow {GB} + \frac{1}{3}\overrightarrow {BC} \)
\(\begin{array}{l} = \overrightarrow {GB} + \frac{1}{3}\left( {\overrightarrow {GC} - \overrightarrow {GB} } \right)\\ = \frac{2}{3}\overrightarrow {GB} + \frac{1}{3}\overrightarrow {GC} = \frac{1}{3}\left( {2\overrightarrow u + \overrightarrow v } \right)\end{array}\)
Ta có: \(\overrightarrow {GN} = \overrightarrow {GC} + \overrightarrow {CN} \)
\(\begin{array}{l} = \overrightarrow {GC} + \frac{1}{3}\overrightarrow {CB} \\ = \overrightarrow {GC} + \frac{1}{3}\left( {\overrightarrow {GB} - \overrightarrow {GC} } \right)\\ = \frac{1}{3}\overrightarrow {GB} + \frac{2}{3}\overrightarrow {GC} = \frac{1}{3}\left( {\overrightarrow u + 2\overrightarrow v } \right)\end{array}\)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 4.58 trang 69 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.59 trang 69 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.61 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.62 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.63 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.64 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.65 trang 70 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.66 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.67 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.68 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.69 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.70 trang 71 SBT Toán 10 Kết nối tri thức tập 1 - KNTT