YOMEDIA
NONE

Toán 10 Kết nối tri thức Bài 11: Tích vô hướng của hai vectơ


HOC247 mời các em học sinh tham khảo Bài Tích vô hướng của hai vectơ bên dưới đây, thông qua bài giảng này các em dễ dàng hệ thống lại toàn bộ kiến thức đã học, bên cạnh đó các em còn nắm được phương pháp giải các bài tập và vận dụng vào giải các bài tập tương tự. Chúc các em có một tiết học thật hay và thật vui khi đến lớp!

ATNETWORK
YOMEDIA
 

Tóm tắt lý thuyết

1.1. Góc giữa hai vectơ

Cho hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) khác \({\vec 0}\). Từ một điểm A tuỳ ý, vẽ các vectơ \(\overrightarrow {AB}  = \overrightarrow u \) và \(\overrightarrow {AC}  = \overrightarrow v \) (Hình cho bên dưới). Khi đó, số đo của góc BAC được gọi là số đo góc giữa hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) hay đơn giản là góc giữa hai vectơ \(\overrightarrow u \), \(\overrightarrow v \) kí hiệu là \(\left( {\overrightarrow u ,\overrightarrow v } \right)\).

Chú ý: 

+ Quy ước rằng góc giữa hai vectơ \(\overrightarrow u \) và \(\overrightarrow 0 \) có thể nhận một giá trị tuỳ ý từ 0° đến 180°.

+ Nếu \(\left( {\overrightarrow u ,\overrightarrow v } \right) = {90^0}\) thì ta nói rằng \(\overrightarrow u \) và \(\overrightarrow v \) vuông góc với nhau, kí hiệu là \({\overrightarrow u  \bot \overrightarrow v }\) hoặc \({\overrightarrow v  \bot \overrightarrow u }\). Đặc biệt \(\overrightarrow 0 \) được coi là vuông góc với mọi vectơ.

Ví dụ: Cho tam giác ABC vuông tại A và \(\widehat B = {30^0}\). Tính \(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right),\left( {\overrightarrow {CA} ,\overrightarrow {CB} } \right),\left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right)\). 

Giải

Ta có: 

\(\begin{array}{l}
\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \overrightarrow {BAC}  = {90^0}\\
\left( {\overrightarrow {CA} ,\overrightarrow {CB} } \right) = \widehat {ACB} = {60^0}\\
\left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {BD} ,\overrightarrow {BC} } \right) = \widehat {DBC} = {150^0}
\end{array}\) 

1.2. Tích vô hướng của hai vectơ

Tích vô hướng của hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) là một số, kí hiệu là \(\overrightarrow u .\overrightarrow v \), được xác định bởi công thức sau:

\(\overrightarrow u .\overrightarrow v  = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.cos\left( {\overrightarrow u ,\overrightarrow v } \right)\) 

Chú ý:

\(\overrightarrow u  \bot \overrightarrow v  \Leftrightarrow \overrightarrow u .\overrightarrow v  = \overrightarrow 0 \)

\(\overrightarrow u .\overrightarrow u \) còn được viết là \({\overrightarrow u ^2}\). Ta có \({\overrightarrow u ^2} = \left| {\overrightarrow u } \right|.\left| {\overrightarrow u } \right|.cos{0^0} = {\left| {\overrightarrow u } \right|^2}\) 

Ví dụ: Cho hình vuông ABCD có cạnh bằng a. Tính các tích vô hướng sau: \(\overrightarrow {AB} .\overrightarrow {AD} ,\overrightarrow {AB} .\overrightarrow {AC} ,\overrightarrow {AB} .\overrightarrow {BD} \) 

Giải

Vì \(\left( {\overrightarrow {AB} .\overrightarrow {AD} } \right) = {90^0}\) nên \(\overrightarrow {AB} .\overrightarrow {AD}  = 0\).

Hình vuông có cạnh bằng a nên có đường chéo bằng \(a\sqrt 2 \) 

Mặt khác, \(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = {45^0},\left( {\overrightarrow {AB} ,\overrightarrow {B{\rm{D}}} } \right) = {135^0}\), do đó \(\overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.cos{45^0} = a.a\sqrt 2 .\frac{{\sqrt 2 }}{2} = {a^2}\), \(\overrightarrow {AB} .\overrightarrow {B{\rm{D}}}  = AB.B{\rm{D}}.cos{135^0} = a.a\sqrt 2 .\left( { - \frac{{\sqrt 2 }}{2}} \right) =  - {a^2}\) 

1.3. Biểu thức tọa độ và tính chất của tích vô hướng

Tích vô hướng của hai vectơ \(\overrightarrow u  = \left( {x';y'} \right)\) được tính theo công thức: \(\overrightarrow u .\overrightarrow v  = xx' + yy'\)

Nhận xét: 

+ Hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) vuông góc với nhau khi và chỉ khi xx' + yy' = 0.

+ Bình phương vô hướng của \(\overrightarrow u \left( {x;y} \right)\) là \({\overrightarrow u ^2} = {x^2} + {y^2}\). 

+ Nếu \(\overrightarrow u  \ne \overrightarrow 0 \) và \(\overrightarrow v  \ne \overrightarrow 0 \) thì \(cos\left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{x{\rm{x}}; + yy'}}{{\sqrt {{x^2} + {y^2}} .\sqrt {x{'^2} + y{'^2}} }}\) 

Tính chất của tích vô hướng 

Với ba vectơ \(\overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) bất kì và mọi số thực k. ta có:

* \(\overrightarrow u .\overrightarrow v  = \overrightarrow v .\overrightarrow u \) (tính chất giao hoán);

* \(\overrightarrow u .\left( {\overrightarrow v  + \overrightarrow {\rm{w}} } \right) = \overrightarrow u .\overrightarrow v  + \overrightarrow u .\overrightarrow {\rm{w}} \) (tính chất phân phối đối với phép cộng);

* \(\left( {k\overrightarrow u } \right).\overrightarrow v  = k\left( {\overrightarrow u .\overrightarrow v } \right) = \overrightarrow u \left( {k.\overrightarrow v } \right)\). 

Chú ý: Từ các tính chất trên, ta có thể chứng minh được:

+ \(\vec u.\left( {\vec v - \overrightarrow {\rm{w}} } \right) = \vec u.\vec v - \vec u.\overrightarrow {\rm{w}} \) (tính chất phân phối đối với phép trừ)

+ \({\left( {\overrightarrow u  + \overrightarrow v } \right)^2} = {\overrightarrow u ^2} + 2\overrightarrow u .\overrightarrow v  + {\overrightarrow v ^2};{\left( {\overrightarrow u  - \overrightarrow v } \right)^2} = {\overrightarrow u ^2} - 2\overrightarrow u .\overrightarrow v  + {\overrightarrow v ^2}\) 

+ \(\left( {\overrightarrow u  + \overrightarrow v } \right).\left( {\overrightarrow u  - \overrightarrow v } \right) = \overrightarrow u  - \overrightarrow v \) 

Ví dụ: Trong mặt phẳng toạ độ Oxy, tính tích vô hướng của các cặp vectơ sau:

a) \(\overrightarrow u  = \left( {2; - 3} \right)\) và \(\overrightarrow v  = \left( {5;3} \right)\) 

b) Hai vectơ đơn vị \(\overrightarrow i \) và \(\overrightarrow j \) tương ứng của các trục Ox, Oy.

Giải

a) Ta có: \(\overrightarrow u .\overrightarrow v  = 2.5 + ( - 3).3 = 10 - 9 = 1\) 

b) Vì \(\overrightarrow i  = \left( {1;0} \right)\) và \(\overrightarrow i  = \left( {0;1} \right)\) nên \(\overrightarrow i .\overrightarrow j  = 1.0 + 0.1 = 0\)

Bài tập minh họa

Câu 1: Cho tam giác đều ABC. Tính \(\left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right)\).

Hướng dẫn giải

Lấy điểm D sao cho: \(\overrightarrow {AD}  = \overrightarrow {BC} \)

Khi đó ta có: \(\left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \widehat {BAD}\)

Dễ thấy ABCD là hình bình hành (hơn nữa còn là hình thoi) nên \(\widehat {BAD} = {180^o} - \widehat {ABC} = {120^o}\)

Vậy số đo góc \(\left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right)\) là \({120^o}\).

Câu 2: Cho tam giác AB C có BC = a, CA = b, AB = c. Hãy tính \(\overrightarrow {AB} .\overrightarrow {AC} \) theo a,b,c.

Hướng dẫn giải

Ta có: \(\overrightarrow {AB} .\overrightarrow {AC}  = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)\)

Mà \(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {BAC}\)\( \Rightarrow \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \cos \widehat {BAC}\)

Lại có: \(\cos \widehat {BAC} = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)(suy ra từ định lí cosin)

\(\begin{array}{l} \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\\ \Leftrightarrow \overrightarrow {AB} .\overrightarrow {AC}  = c.b.\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\\ \Leftrightarrow \overrightarrow {AB} .\overrightarrow {AC}  = \frac{{{b^2} + {c^2} - {a^2}}}{2}\end{array}\)

Câu 3: Cho hai vectơ cùng phương \(\overrightarrow u  = \left( {x;y} \right)\) và \(\overrightarrow v  = \left( {kx;ky} \right)\). Hãy kiểm tra công thức \(\overrightarrow u .\overrightarrow v  = k\left( {{x^2} + {y^2}} \right)\) theo từng trường hợp sau:

a) \(\overrightarrow u  = \overrightarrow 0 \)

b) \(\overrightarrow u  \ne \overrightarrow 0 \) và \(k \ge 0\)

c) \(\overrightarrow u  \ne \overrightarrow 0 \) và \(k < 0\)

Hướng dẫn giải

a) Vì \(\overrightarrow u  = \overrightarrow 0 \) nên \(\overrightarrow u \) vuông góc với mọi \(\overrightarrow v \).

Như vậy \(\overrightarrow u .\overrightarrow v  = 0\)

Mặt khác: \(\overrightarrow u  = \overrightarrow 0  \Leftrightarrow x = y = 0\)

\( \Rightarrow k\left( {{x^2} + {y^2}} \right) = 0 = \overrightarrow u .\overrightarrow v \)

b) Vì \(\overrightarrow u  \ne \overrightarrow 0 \) và \(k \ge 0\) nên \(\overrightarrow u \) và \(\overrightarrow v \)cùng hướng.

\( \Rightarrow \;\left( {\overrightarrow u ,\;\overrightarrow v } \right) = {0^o} \Leftrightarrow \cos \;\left( {\overrightarrow u ,\;\overrightarrow v } \right) = 1\)

\(\begin{array}{l} \Rightarrow \overrightarrow u .\;\overrightarrow v  = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right| = \sqrt {{x^2} + {y^2}} .\sqrt {{{\left( {kx} \right)}^2} + {{\left( {ky} \right)}^2}} \\ = \sqrt {{x^2} + {y^2}} .\left| k \right|.\sqrt {{x^2} + {y^2}}  = k\left( {{x^2} + {y^2}} \right)\end{array}\)

(|k|= k do k > 0)

c) Vì \(\overrightarrow u  \ne \overrightarrow 0 \) và \(k < 0\) nên \(\overrightarrow u \) và \(\overrightarrow v \)ngược hướng.

\( \Rightarrow \;\left( {\overrightarrow u ,\;\overrightarrow v } \right) = {180^o} \Leftrightarrow \cos \;\left( {\overrightarrow u ,\;\overrightarrow v } \right) =  - 1\)

\(\begin{array}{l} \Rightarrow \overrightarrow u .\;\overrightarrow v  =  - \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right| =  - \sqrt {{x^2} + {y^2}} .\sqrt {{{\left( {kx} \right)}^2} + {{\left( {ky} \right)}^2}} \\ =  - \sqrt {{x^2} + {y^2}} .\left| k \right|.\sqrt {{x^2} + {y^2}}  = k\left( {{x^2} + {y^2}} \right).\end{array}\)

Luyện tập Bài 11 Toán 10 KNTT

Qua bài giảng trên sẽ giúp các em nắm được các nội dung như sau:

- Biết tính tích vô hướng của hai vectơ, các tính chất của tích vô hướng và biểu thức toạ độ của tích vô hướng.

- Tính được độ dài của vectơ và khoảng cách giữa hai điểm.

- Vận dụng công thức tính vô hướng để tính vào bài tập cụ thể.

3.1. Bài tập trắc nghiệm Bài 11 Toán 10 KNTT

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 10 Kết nối tri thức Chương 4 Bài 11 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!

3.2. Bài tập SGK Bài 11 Toán 10 KNTT

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 10 Kết nối tri thức Chương 4 Bài 11 để giúp các em nắm vững bài học và các phương pháp giải bài tập.

Hoạt động 1 trang 66 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Câu hỏi trang 66 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Luyện tập 1 trang 66 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Câu hỏi 1 trang 67 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Câu hỏi 2 trang 67 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Luyện tập 2 trang 67 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Hoạt động 2 trang 68 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Hoạt động 3 trang 68 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Luyện tập 3 trang 68 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Hoạt động 4 trang 68 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Luyện tập 4 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Vận dụng trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.21 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.22 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.23 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.24 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.25 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.26 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.29 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.30 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.31 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.32 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.33 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.34 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.35 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.36 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.37 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.38 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Hỏi đáp Bài 11 Toán 10 KNTT

Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!

Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!

-- Mod Toán Học 10 HỌC247

NONE
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON