YOMEDIA
NONE

Hoạt động 2 trang 68 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Hoạt động 2 trang 68 SGK Toán 10 Kết nối tri thức tập 1

Cho hai vectơ cùng phương \(\overrightarrow u  = \left( {x;y} \right)\) và \(\overrightarrow v  = \left( {kx;ky} \right)\). Hãy kiểm tra công thức \(\overrightarrow u .\overrightarrow v  = k\left( {{x^2} + {y^2}} \right)\) theo từng trường hợp sau:

a) \(\overrightarrow u  = \overrightarrow 0 \)

b) \(\overrightarrow u  \ne \overrightarrow 0 \) và \(k \ge 0\)

c) \(\overrightarrow u  \ne \overrightarrow 0 \) và \(k < 0\)

ATNETWORK

Hướng dẫn giải chi tiết

Phương pháp giải

Tính tích vô hướng bằng công thức: \(\overrightarrow u .\;\overrightarrow v  = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|.\cos \;\left( {\overrightarrow u ,\;\overrightarrow v } \right)\)

Hướng dẫn giải

a) Vì \(\overrightarrow u  = \overrightarrow 0 \) nên \(\overrightarrow u \) vuông góc với mọi \(\overrightarrow v \).

Như vậy \(\overrightarrow u .\overrightarrow v  = 0\)

Mặt khác: \(\overrightarrow u  = \overrightarrow 0  \Leftrightarrow x = y = 0\)

\( \Rightarrow k\left( {{x^2} + {y^2}} \right) = 0 = \overrightarrow u .\overrightarrow v \)

b) Vì \(\overrightarrow u  \ne \overrightarrow 0 \) và \(k \ge 0\) nên \(\overrightarrow u \) và \(\overrightarrow v \)cùng hướng.

\( \Rightarrow \;\left( {\overrightarrow u ,\;\overrightarrow v } \right) = {0^o} \Leftrightarrow \cos \;\left( {\overrightarrow u ,\;\overrightarrow v } \right) = 1\)

\(\begin{array}{l} \Rightarrow \overrightarrow u .\;\overrightarrow v  = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right| = \sqrt {{x^2} + {y^2}} .\sqrt {{{\left( {kx} \right)}^2} + {{\left( {ky} \right)}^2}} \\ = \sqrt {{x^2} + {y^2}} .\left| k \right|.\sqrt {{x^2} + {y^2}}  = k\left( {{x^2} + {y^2}} \right)\end{array}\)

(|k|= k do k > 0)

c) Vì \(\overrightarrow u  \ne \overrightarrow 0 \) và \(k < 0\) nên \(\overrightarrow u \) và \(\overrightarrow v \)ngược hướng.

\( \Rightarrow \;\left( {\overrightarrow u ,\;\overrightarrow v } \right) = {180^o} \Leftrightarrow \cos \;\left( {\overrightarrow u ,\;\overrightarrow v } \right) =  - 1\)

\(\begin{array}{l} \Rightarrow \overrightarrow u .\;\overrightarrow v  =  - \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right| =  - \sqrt {{x^2} + {y^2}} .\sqrt {{{\left( {kx} \right)}^2} + {{\left( {ky} \right)}^2}} \\ =  - \sqrt {{x^2} + {y^2}} .\left| k \right|.\sqrt {{x^2} + {y^2}}  = k\left( {{x^2} + {y^2}} \right).\end{array}\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Hoạt động 2 trang 68 SGK Toán 10 Kết nối tri thức tập 1 - KNTT HAY thì click chia sẻ 
YOMEDIA

Bài tập SGK khác

Câu hỏi 2 trang 67 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Luyện tập 2 trang 67 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Hoạt động 3 trang 68 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Luyện tập 3 trang 68 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Hoạt động 4 trang 68 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Luyện tập 4 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Vận dụng trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.21 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.22 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.23 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.24 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.25 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.26 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.29 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.30 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.31 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.32 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.33 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.34 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.35 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.36 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.37 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.38 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON