Câu hỏi 1 trang 67 SGK Toán 10 Kết nối tri thức tập 1
Khi nào thì tích vô hướng của hai vectơ \(\overrightarrow u ,\;\overrightarrow v \) là một số dương? Là một số âm?
Hướng dẫn giải chi tiết
Phương pháp giải
+) Tích vô hướng của hai vectơ \(\overrightarrow u ,\;\overrightarrow v \): \(\overrightarrow u .\;\overrightarrow v = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|.\cos \;\left( {\overrightarrow u ,\;\overrightarrow v } \right)\)
Nhận xét: \(\overrightarrow u .\;\overrightarrow v \) cùng dấu với \(\cos \;\left( {\overrightarrow u ,\;\overrightarrow v } \right)\)
Hướng dẫn giải
Dễ thấy: \(\overrightarrow u .\;\overrightarrow v \) cùng dấu với \(\cos \;\left( {\overrightarrow u ,\;\overrightarrow v } \right)\) (do \(\left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right| > 0\)). Do đó:
+) \(\overrightarrow u .\;\overrightarrow v \;\; > 0\) \( \Leftrightarrow \cos \;\left( {\overrightarrow u ,\;\overrightarrow v } \right) > 0\) hay \({0^o} \le \left( {\overrightarrow u ,\;\overrightarrow v } \right) < {90^o}\)
+) \(\overrightarrow u .\;\overrightarrow v \;\; < 0\) \( \Leftrightarrow \cos \;\left( {\overrightarrow u ,\;\overrightarrow v } \right)\;\; < 0\) hay \({90^o} < \left( {\overrightarrow u ,\;\overrightarrow v } \right) \le {180^o}\)
Vậy \(\overrightarrow u .\;\overrightarrow v \;\; > 0\) nếu \({0^o} \le \left( {\overrightarrow u ,\;\overrightarrow v } \right) < {90^o}\) và \(\overrightarrow u .\;\overrightarrow v \;\; < 0\) nếu \({90^o} < \left( {\overrightarrow u ,\;\overrightarrow v } \right) \le {180^o}.\)
-- Mod Toán 10 HỌC247
-
Trên mặt phẳng Oxy hãy tính góc giữa hai vectơ là \(\overrightarrow a \) và \(\overrightarrow b \) trong các trường hợp sau: \(\overrightarrow a = (-2; -2\sqrt3)\), \(\overrightarrow b = (3; \sqrt3)\);
bởi thanh hằng 04/09/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Câu hỏi trang 66 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Luyện tập 1 trang 66 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Câu hỏi 2 trang 67 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Luyện tập 2 trang 67 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Hoạt động 2 trang 68 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Hoạt động 3 trang 68 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Luyện tập 3 trang 68 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Hoạt động 4 trang 68 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Luyện tập 4 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Vận dụng trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.21 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.22 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.23 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.24 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.25 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.26 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.29 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.30 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.31 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.32 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.33 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.34 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.35 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.36 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.37 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.38 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT